
The openEHR Technical Change Management Plan
Rev 0.8

Author: {T Beale}
The openEHR Technical Change Management Plan

Editor:{T Beale}1

Revision: 0.8

Pages: 37

1. Ocean Informatics Australia
Page 1 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

© 2003-2005 The openEHR Foundation

The openEHR foundation
is an independent, non-profit community, facilitating the creation and sharing

of health records by consumers and clinicians via open-source, standards-
based implementations.

email: info@openEHR.org web: www.openEHR.org

Founding
Chairman

David Ingram, Professor of Health Informatics, CHIME, University
College London

Founding Mem-
bers

Dr P Schloeffel, Dr S Heard, Dr D Kalra, D Lloyd, T Beale

The openEHR Technical Change Management Plan
Rev 0.8
Copyright Notice

© Copyright openEHR Foundation 2001 - 2005
All Rights Reserved

1. This document is protected by copyright and/or database right throughout the
world and is owned by the openEHR Foundation.

2. You may read and print the document for private, non-commercial use.
3. You may use this document (in whole or in part) for the purposes of making

presentations and education, so long as such purposes are non-commercial and
are designed to comment on, further the goals of, or inform third parties about,
openEHR.

4. You must not alter, modify, add to or delete anything from the document you
use (except as is permitted in paragraphs 2 and 3 above).

5. You shall, in any use of this document, include an acknowledgement in the
form:

"© Copyright openEHR Foundation 2001-2005. All rights reserved.
www.openEHR.org"

6. This document is being provided as a service to the academic community and
on a non-commercial basis. Accordingly, to the fullest extent permitted under
applicable law, the openEHR Foundation accepts no liability and offers no
warranties in relation to the materials and documentation and their content.

7. If you wish to commercialise, license, sell, distribute, use or otherwise copy the
materials and documents on this site other than as provided for in paragraphs 1
to 6 above, you must comply with the terms and conditions of the openEHR
Free Commercial Use Licence, or enter into a separate written agreement with
openEHR Foundation covering such activities. The terms and conditions of the
openEHR Free Commercial Use Licence can be found at
http://www.openehr.org/free_commercial_use.htm
Date of Issue:04 Feb 2005 Page 2 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan
Rev 0.8
Amendment Record

Acknowledgements
This paper has been funded by The University College, London and Ocean Informatics, Australia.

Issue Details Who Completed

0.8 Split off openEHR Overview document. T Beale 04 Feb 2005

0.7 Addition of sections on governance, IP and project overview. T Beale
M Darlison

10 Jan 2005

0.6 Review by UCL team D Kalra,
T Austin,

N Lea,
D Lloyd
T Beale

10 Dec 2004

0.5.2 Review by prof. David Ingram (UCL). D Ingram 20 Feb 2004

0.5.1 Further review by Tim Cook <Tim@openparadigms.com>. T Beale 10 Dec 2003

0.5 Further development of ARB process. T Beale 06 Dec 2003

0.4 Review by Tim Cook <Tim@openparadigms.com>; further
development.

T Cook,
T Beale

22 Nov 2003

0.3 Updated in preparation for public openEHR CM site launch. T Beale 15 Nov 2003

0.2 Updated May visit UCL T Beale 13 May 2003

0.1 Initial Writing T Beale 20 Jan 2003
Author: {T Beale} Page 3 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan
Rev 0.8
Date of Issue:04 Feb 2005 Page 4 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan
Rev 0.8
Table of Contents

1 Introduction .. 7
1.1 Purpose...7
1.2 Audience ..7
1.3 Status..7
1.4 Terms and Acronyms ...7

2 Overview ... 8
2.1 Activities ..8
2.2 Management...8

3 openEHR Technical Projects... 12
3.1 The Specification project ...12
3.2 Reference Implementation Projects ...14
3.3 Ad hoc Implementation Projects..15

4 Repository Organisation.. 16
4.1 Repository Naming ..16
4.2 Directory Structure...16

5 Release Management ... 19
5.1 Overview..19
5.2 Release Structure and Branching ...19
5.3 Interior Versions...21
5.4 Tag Names ...21

6 Change Management ... 22
6.1 Overview..22
6.2 The Change Process...23
6.2.1 Overview..23
6.2.2 Problem Reporting...23
6.2.3 Change Request Process for openEHR Reference Projects...........24
6.2.3.1 Workflow ..24
6.2.3.2 CR Lifecycle ...25
6.2.3.3 Project Group-managed CRs ..26
6.2.3.4 Review Board-managed CRs ..26
6.2.4 Change Request Process for ad hoc Projects27
6.2.4.1 Workflow ..27
6.2.4.2 CR Lifecycle ...28
6.2.4.3 CR Management ...28

7 Tools... 30
7.1 Overview..30
7.2 Configuration Management System ..31
7.3 PR / CR Database ..31
7.4 Publishing/Distribution ..31

8 CI Identification ... 32
Appendix AForms .. 33
A.1 Problem Report Form ..33
A.2 PR Form Fields ..33
A.3 Change Request Form..34
Author: {T Beale} Page 5 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan
Rev 0.8
A.4 CR Form Fields ... 34
Date of Issue:04 Feb 2005 Page 6 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan Introduction
Rev 0.8
1 Introduction

1.1 Purpose
The purpose of this document is to describe the management of openEHR technical projects, i.e.
projects in the openEHR technical space (as described in the “Guide to openEHR”) and carried out
within the openEHR development environment. These projects have “controlled” deliverables, and a
clear problem reporting and change request strategy, defined by this document. Two change manage-
ment strategies are described: one with a “review board” for reference projects, and one without, for
ad hoc projects.

1.2 Audience
The primary audience for this document is developers of specifications and software for the
openEHR Foundation.

1.3 Status
The latest version of this document can be found in PDF and HTML formats at
http://www.openEHR.org/repository/spec-dev/latest/publish-
ing/CM/CM_plan/REV_HIST.html. New versions are announced on openehr-
announce@openehr.org.

1.4 Terms and Acronyms
ARB Architectural Review Board
CI Configuration Item - any controlled artifact, such as a document, source file, test

case etc.
CM Configuration management
IP Intellectual property
PG Project Group
Author: {T Beale} Page 7 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

http://www.openEHR.org/Doc_html/Document/roadmap.htm
mailto:openehr-technical@openehr.org
mailto:openehr-announce@openehr.org
mailto:openehr-announce@openehr.org
http://www.openEHR.org/repository/spec-dev/latest/publishing/CM/CM_plan/REV_HIST.html
http://www.openEHR.org/repository/spec-dev/latest/publishing/CM/CM_plan/REV_HIST.html

Overview The openEHR Technical Change Management Plan
Rev 0.8
2 Overview

2.1 Activities
The figure below illustrates the technical activity areas of openEHR, including specification and
implementation projects, and delivery/deployment activities.

Each solid-line bubble on the left part of the diagram is a project in openEHR. As shown, there are
four major areas of activity: specification, implementation, knowledge, and delivery. The first two
correspond to what most people would think of as software development; their change management is
the subject of this document. The projects in these two groups are described in more detail in section
3 on page 12.

2.2 Management
In the technical space of openEHR, work is performed by project groups (PGs), which are in some
cases overseen by the Architectural Review Board (ARB). The ARB consists of a eight or more inter-
national members of openEHR, all with long-term experience in an area of health informatics. The
current makeup of the ARB may be found on the openEHR website ARB page. The ARB’s function is
to review and make decisions on requests for change that either have significant impact on a project,
or that cannot be resolved by the project development group on its own. It operates using simple
majority voting.

Project types
Project groups are groups of developers responsible for the work done on a project. There are two
kinds of openEHR technical project - reference projects, and ad hoc projects. Reference projects
develop reference deliverables, which constitute the “official” basis for the community to develop
and test the conformance of products. All reference projects are change managed by their project
group and the ARB.

FIGURE 1 openEHR Technical Activities

Requirements

Architecture ITSs

Conformance

EHR ServerKernel Demographic
 Server

ADL Parser

Tools Systems

implementation

specification

delivery Standards
Engagement

...

Specifications

Conformance
Testing

Education
& Trainingactivities

projects

projects

technical
Date of Issue:04 Feb 2005 Page 8 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

http://www.openehr.org/about_openehr/t_arb.htm

The openEHR Technical Change Management Plan Overview
Rev 0.8
Ad hoc openEHR projects on the other hand do not generate reference specifications or implementa-
tions, and can be change-managed without recourse to the ARB. Ad hoc project groups will most
likely be self-selecting. Anyone can become a member of a project by making themselves known to
the existing group, and being given modification rights on the relevant repository. A management
view of openEHR’s technical space is illustrated in FIGURE 2 below. In this figure, reference project
groups are shown connected to a board of review, while ad hoc projects are not.

openEHR Reference Deliverables
Some deliverables created in the openEHR technical space are “reference deliverables”. These arti-
facts are the definitive instance in their category: the openEHR information and service model speci-
fications, the implementation technology specifications (ITSs) such as XML-schemas, programming
language interfaces, openEHR terminology, conformance test cases and openEHR reference imple-
mentations (e.g. parsers). Reference implementations are created either for the purposes of conform-
ance testing, or in cases where absolutely dependable, re-usable, standard components are required.
All openEHR reference deliverables are created by openEHR reference projects.

The relationship among various kinds of projects and openEHR/non-openEHR products is shown in
FIGURE 3 below.

Definition of an openEHR Technical Project
For the purposes of managing work done under the openEHR banner, the notion of an “openEHR
technical project” is explicitly defined as any project that follows this change management plan.

openEHR Board

ARB

PG PG PG PG

PG PG PG PG PG

FIGURE 2 Management View of the openEHR Technical Space

delivery activities

reference

ad hoc
project groups

project groupsproject groups

openEHR
reference
projects

openEHR
ad hoc
projects

other
projects

developing
openEHR
products

openEHR.org

openEHR products

non-
openEHR
projects

FIGURE 3 Relationship between Projects and Products

openEHR
reference

deliverables
Author: {T Beale} Page 9 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

Overview The openEHR Technical Change Management Plan
Rev 0.8
is a) based on openEHR in some formal way (typically aims to build something that satisfies
openEHR conformance criteria) and b) that agrees to do its work within the development framework
offered at openEHR.org, defined below. All projects that develop reference deliverables are openEHR
projects. The openEHR project development environment is defined by the following.

Change Management
• A standard version and change management toolset/environment. openEHR currently uses

BitKeeper in “open logging” mode for this purpose.
• A basic change management rule - only a member of a project team can a) create a change

request, and b) make any change to the project repository. This simply means that the team
always knows who is in it, and has agreed among themselves that they can make modifica-
tions. Non-team members proposing sensible modifications are likely to be asked to join the
team.

• A standard Problem Report (PR) lifecycle.
• A standard Change Request (CR) lifecycle.
• A standard online tool/environment for creating and accessing CRs and PRs. CRs need to be

able to be created and viewed in a standard way by developers, whilst PRs need to be cre-
ated and viewed in a known place and in a sensible way by users. PRs are the public prob-
lem-logging and reporting interface for users.

• For reference projects, development is overseen by the ARB, according to the change man-
agement process described in Change Request Process for openEHR Reference Projects on
page 24. For ad hoc projects, development may adopt the simpler non-ARB process
described in Change Request Process for ad hoc Projects on page 27.

Build and Release
• The top level directory structure of implementation projects is fairly similar if not the same.
• An approach to build management that is as far as possible homogeneous across projects

(facilitates developers working on more than one project). This does not necessarily have to
be a single tool, but if e.g. ant and make are used, they should be used in the same way
across projects.

• A standard way of distributing the software to users, particularly binaries (i.e. make it easy
for non-IT users).

To Be Determined: MD: what about a line on bundling etc (cf Pro-
tege...)

Intellectual Property Rights
• Copyright may optionally be transferred to the openEHR Foundation, converted to joint

copyright with the openEHR Foundation, or may remain with the originating organisation or
author.

• Documents (e.g. manuals) use the standard openEHR document licence.
• Source code uses the standard openEHR open source licence. This is currently the Mozilla

tri-license, which is really just a meta-license allowing the user to nominate GPL, LGPL, or
MPL as the licence they use the software under.

• Respect the structure of the org.openehr namespace by the ARB, for source code, schemas,
terminologies and any other reference deliverable. Non-reference projects may not use the
org.openehr namespace.
Date of Issue:04 Feb 2005 Page 10 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

http://www.bitmover.com

The openEHR Technical Change Management Plan Overview
Rev 0.8
• Irrevocability: organisations cannot retrospectively revoke the right of the openEHR Foun-
dation and community to continue to use software or other artifacts which they have devel-
oped within the openEHR environment (since this would contravene the terms of the
license). They may of course use any such developed works as a basis for other develop-
ments. This condition ensures that neither the community (which may have come to rely on
a component) nor the original developing organisation (which may have spent significant
time and money on the development) lose access to the work; if the interests cease to coin-
cide, the development is simply “forked”, and only one line remains with openEHR.

Projects that agree to these items will be able to take advantage of the facilities provided by the
openEHR Foundation, including version management, build servers and a distribution server. It par-
ticularly enables smaller projects to proceed where otherwise they might not have sufficient technical
resources.

This approach to development is offered as a service by openEHR, and of course is not a requirement
of developing openEHR-compliant products. Development organisations are encouraged to develop
openEHR-based products in any way they see fit. Many projects will be done by companies, universi-
ties and so on, according to their own processes, including completely commercial closed source
projects.
Author: {T Beale} Page 11 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

openEHR Technical Projects The openEHR Technical Change Management Plan
Rev 0.8
3 openEHR Technical Projects

3.1 The Specification project
The openEHR specification project includes deliverables that are considered technical specifications -
i.e. that can be used either to develop further specifications, or to build systems, test plans, or other
usable artifacts. The specification project includes requirements, abstract architecture, ITSs and con-
formance specifications as shown in the following table.

Deliverable Component Description

Requirements
Requirements
Base

The Requirements Base is a repository of requirements
underpinning the EHR and related functionality in the health
information environment. This repository is the definitive
requirements basis of openEHR, and will continue to evolve
in time. It consists of both functional requirements and use
cases.

Conformance
Statement

Conformance statement of openEHR with respect to exist-
ing/emerging standards, e.g. ISO TS 18308.

Architecture Design
Principles

Design principles of health information systems and in par-
ticular the EHR

Reference Model
(RM)

The primary set of abstract, formal specifications of
openEHR models in the information viewpoint. These
abstract expressions are independent of implementation tech-
nologies. Includes abstract Information Models for:

• EHR_extract
• Common
• Data Structures
• Data Types
• Support (low level primitives)

Service Model
(SM)

The primary set of abstract, formal specifications of
openEHR models in the computational viewpoint. These
abstract expressions are independent of implementation tech-
nologies. Includes abstract Service Models for:

• EHR
• Demographics
• Workflow
• Archetype repository

Archetype Model
(AM)

Various formal specifications defining the openEHR arche-
type semantics.

• Archetype Principles
• Archetype Definition Language (ADL) specification
• Template Definition Language (TDL) specification
• Archetype Query Language (AQL) specification
• Archetype Object Model (AOM)

Archetype
System

• The openEHR Archetype System
Date of Issue:04 Feb 2005 Page 12 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan openEHR Technical Projects
Rev 0.8
Of the above, everything except the requirements and design principles are defined using rigorous,
processible formalisms, and are maintained using tools, as shown in FIGURE 4. The tool chain is
described in detail in the openEHR Modelling Guide.

The primary models are used as the source for the published documentary form of the specifications,
generally in Adobe PDF format. There is not considered to be any semantic difference between tool-
based abstract model expressions and their documentary counterparts, i.e. there is no “mapping” or
“conversion”. The primary models are also losslessly translated to a UML-2.0 compliant XML
instance form, from which all other views are generated.

Implementation Technology Specification (ITS) Components
ITSs are the concrete expressions of abstract specifications in specific implementation-oriented tech-
nologies, and are the artifacts used directly for building software and databases. They are generated
via a mapping process, and may have reduced semantic content, e.g. they might not include certain
abstract semantics such as functions, invariants. For example, the XML-schema ITS does not contain
functions, since XML-schema is a data-oriented formalism, and does not have a way (or need) to
express functions. Otherwise however, ITSs do include full coverage of all the relevant openEHR
specifications. The two categories of ITS are as follows.

Interoperability specifications include any expression of an abstract specification in a concrete
interoperability technology, including:

Deliverable Component Description

Implementation
Technology

Specifications
(ITSs)

ITS-java • Java expression of architecture specifications
ITS-xml_schema • XML-schema expression of architecture specifications
ITS-idl • OMG IDL expression of architecture specifications
ITS-csharp • C# expression of architecture specifications
etc • other languages,

Conformance Conformance Test cases and plans for testing of conformance of openEHR
implementations against Requirements and ITSs.

FIGURE 4 openEHR specification project reference deliverables

ECMA Eif2UML

Model verification environment

parser

UML2XSD
converter

UML2Java
converter

UML2WSDL
converter

etc

Published
document

form

Eiffel

Compiler
Eiffel

source

UML
2.0

XML

W3C
.xsd

java

WSDL

ITSs
Author: {T Beale} Page 13 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

openEHR Technical Projects The openEHR Technical Change Management Plan
Rev 0.8
• IDL expressions, e.g. in OMG IDL syntax, DCE syntax Microsoft, WSDL, or other publicly
available interface formalisms

• XML schema or other XML-based formalism

Implementation specifications include any expression of an abstract specification in a concrete
implementation technology, including:

• any programming language. Such expressions may be code interfaces, example working
code, or other code guidelines.

• any database schema language. Such expressions may include full schemas for particular
database products and generic schemas for a class of product.

Change Management
In the above table, the items in the “Component” column are the items against which problem reports
(PRs) are made. In general, PRs will only be raised against executable components or computable
components like XML-schemas.

The abstract architecture deliverable (second major row of table) is the main driver of major releases
of the specification project. That is to say, if the abstract models change in any significant way, a new
release is declared. The Architectural Review Board (ARB) decides on new releases.

Changes in the abstract architecture models will immediately cause changes in the ITSs, since these
are the directly usable expression of the abstract architecture. However it might be some months
before various implementation projects are changed to reflect specification changes.

3.2 Reference Implementation Projects
Reference implementation projects produce artifacts of which only one official version is needed.
These are usually used as the basis for conformance testing, or in some cases, are core software com-
ponents that must have guaranteed correctness and reliability. The following table shows a number of
openEHR reference implementation projects.

Project Component Description

Tools (various)

This project develops various tools
• any converter that creates a derived artifact from an

abstract one
• tools for validating specifications in the reference

model
• tools for working with test data or test cases
• archetype and template validation tools

Kernel
Kernel in lang X

Open source implementation of the openEHR refer-
ence and archetype models, as an archetype- and
template-enabled data processing component.

Wrappers in other
languages

Open source implementations of wrappers of the
kernel for other development languages

ADL Parser

Eiffel ADL Parser Original ADL reference parser implementing current
version of the ADL specification.

Java-wrapped ADL
parser

Java wrapping for the parser, implemented using JNI

dotNet ADL parser Dotnet edition of the parser, for MS Windows.
etc
Date of Issue:04 Feb 2005 Page 14 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan openEHR Technical Projects
Rev 0.8
3.3 Ad hoc Implementation Projects
The ad hoc implementation projects produce non-reference tools or systems based on any reference
deliverable, whether directly from specifications, or on existing components. Over time, there may
well be multiple projects each implementing the same category of deliverable, such as an archetype
editor or EHR server; products developed in this way will usually perform the same general function,
but may have significantly different performance characteristics, user interface design approaches, or
differ in some other way relevant to end use. The following table shows a list of possible openEHR
projects, and their components.

Project Component Description
Archetype Editor Tool for creating and viewing archetypes.

EHR server EHR repository providing versioned Contribution
interface, with transaction management

Demographic
server

Demographic data repository, providing versioned
Contribution interface, with transaction management

etc
Author: {T Beale} Page 15 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

Repository Organisation The openEHR Technical Change Management Plan
Rev 0.8
4 Repository Organisation

4.1 Repository Naming
Each openEHR project is controlled in a separate versioned repository. Currently, the BitKeeper tool
is used to manage repositories (see http://www.BitKeeper.com and the relevant openEHR website
pages). Due to the way BitKeeper works, each major release of each project is a separate repository
(explained in detail in next section). As a consequence, repository names include an indicator of the
release. Main line development repositories have names like “xxx-dev”, while specific releases have
names like “xxx-0.9” or “xxx-jan2004”. The general pattern is a string, containing no ‘-’ (dash) char-
acters, which is based on the project name (e.g. “spec”), followed by a dash, followed by another
string that gives the release name (e.g. “0.9”).

4.2 Directory Structure
FIGURE 5 below shows the general directory structure of openEHR projects, including a special
“openEHR” project used to maintain deliverables that apply to the openEHR Foundation or commu-
nity as a whole.

In this figure, each block corresponds to a distinct repository. A “repository” is thus the technical unit
of change management, meaning that it includes content that should be change managed together -
i.e. when a change request is raised, it applies to all items in the repository.

The repositories currently defined include:

• openehr: globally applicable information, including legal, project management, general
process, and so on;

• spec-dev: the main line of development of the specification project;
• adl_parser-dev: the main line of development of the ADL parser project;
• kernel-dev: the main line of development of the kernel implementation project;

$OPENEHR

xxxx -- output of this project

process -- documents describing overall process

FIGURE 5 General Directory Structure of openEHR Repositories

project A

<project space>

project -- documents relating to project management
legal -- documents relating to licences, copyright

distribution -- readable docs, exes.

CM -- Configuration Management area; CRs, PRs, users, etc

openEHR project

<project>

project B

etc
Date of Issue:04 Feb 2005 Page 16 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

http://www.BitKeeper.com
http://www.openehr.org/developer/t_bk_um_top.htm
http://www.openehr.org/developer/t_bk_um_top.htm

The openEHR Technical Change Management Plan Repository Organisation
Rev 0.8
In each repository, the directory structure is driven by the needs of the project spaces included in that
repository. Each repository has a CM directory containing its CRs and PRs, and optionally a CM
plan; if no CM plan is found, the CM plan (and process) from the spec-dev repository is assumed.

The following figure illustrates how the directory structure translates into a concrete directory struc-
ture for the spec-dev repository.

The following sections describe the structures of some of the major openEHR projects.

Reference Model
The directory structure of the RM component in the spec repository is illustrated in FIGURE 7.

spec-dev

architecture
design_principles -- Design Principles

reference_model (RM) -- Information models

archetype_model (AM) -- Archetype models & Languages

CM

FIGURE 6 Structure of spec Repository

requirements

requirements base
conformance statements

ITS -- implementation technology specifications

computable -- computable expressions of the RM and AM

conformance -- conformance specifications

publishing -- distributable form of docs

$OPENEHR

PRs
CRs

CM_plan

service_model (SM) -- Computational models

reference_model

ehr
<information model document source files>

ehr_extract

<information model document source files>

FIGURE 7 Specification Project - reference_model directory

etc

demographic
<information model document source files>

common
<information model document source files>

data_structures

<information model document source files>
Author: {T Beale} Page 17 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

Repository Organisation The openEHR Technical Change Management Plan
Rev 0.8
Archetype Model
The directory structure of the Archetype Model component is illustrated in FIGURE 8.

ITS Components
The directory structure of the ITS components of the spec-xxx repositories is shown in FIGURE 9.

language

ADL
specification -- documentary expressions of ADL

FIGURE 8 Specification Project - archetype_model directory

computable -- computable expressions of ADL
TDL

specification -- documentary expressions of TDL
computable -- computable expressions of TDL

AQL
specification -- documentary expressions of AQL
computable -- computable expressions of AQL

archetype_model

model -- Archetype Object Model document

system -- Archetype System document
principles -- Archetype Principles document

ITS -- implem technology expressions of all abstract specs

xml-schema

ehr_im.xsd
ehr_am.xsd
demographic_im.xsd
...etc...

idl
ehr_sm.idl
demographic_sm.idl
...etc...

<other formalism>

FIGURE 9 ITS Directory Structure

java
ehr_im.java
demographic_im.java
...etc...

<other PL>
ehr_im.xx
demographic_im.xx
...etc...

python
ehr_im.py
demographic_im.py
...etc...
Date of Issue:04 Feb 2005 Page 18 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan Release Management
Rev 0.8
5 Release Management

5.1 Overview
A named “release” is formally defined as a named list - known as a “baseline” - of the set of control-
led items in a repository, and their individual version numbers at the point of time of the release.
Releases correspond to the release of major additions in specification or functionality of the total
product, and usually occur in coarse-grained time, e.g. every quarter, six months, or year. Every
change request that is processed between releases is targetted to a particular release, usually the next
one, but not necessarily - the CM system allows multiple future releases to be running at once.

How: Releases are created in BitKeeper repositories simply by using the “bk tag” command.

Each release proceeds through a number of phases. The rules about what kind of changes can be made
to the repository during the phases vary, as shown in the following example:

phase = development any change
phase = test only changes to correct errors or bugs
phase = production only changes to correct bugs found in use

The actual phases used in openEHR repositories may vary with the repository. In fact, only the differ-
ence between “development” and “after development” phases are made by branching the repositories.

How: A branch is done by using the ‘bk clone’ command to create the repository
representing the branch. Then ‘bk level’ should be used to set the level of the new
repository to a level lower than the parent just cloned from.

All repositories representing main line development are named “xxx-dev”, while any named release
has a branch repository named e.g. “xxx-1.5”, where “1.5” is the release identifier. Release identifiers
can be any string.

5.2 Release Structure and Branching
The relationship between releases is worth explaining in some detail, since it is the basis of the work-
flow of any project. FIGURE 10 illustrates a typical workflow. Typical activities are as follows.

• Work starts on a development repository (xxx-dev), and continues for some time.
• At some point, it is decided that the state of work is stable enough to declare as a named

release that could be used outside the development team. What happens at this point is that a
logical “branch” is created, representing the named release, while the original xxx-dev
repository continues to exist. With BitKeeper, branches are effected simply by cloning and
renaming; a clone of spec-dev called spec-1.0 will achieve the desired effect.

• The repository corresponding to the logical branch is now considered to be limited to that
release, i.e. it is considered to be in a testing phase. The only allowable changes to it are bug
and documentation fixes.

• Meanwhile, general development continues on the xxx-dev repository. As time goes on,
fixes will accumulate in the branch release repository, e.g. due to consistent testing and use.
Usually these fixes will be needed on the mainline development as well; the way to obtain
them is to create a “patch” containing changes since the beginning of the branch repository,
and apply it to the xxx-dev repository (red dashed arrows right to left).

• This operation may be repeated, where each patch is generated from the change following
the last change in the previous patch.
Author: {T Beale} Page 19 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

Release Management The openEHR Technical Change Management Plan
Rev 0.8
Eventually another release will be declared, and the whole operation will repeat, leading to (for exam-
ple), xxx-dev, xxx-0.9 and xxx-1.0 repositories. As time goes on, users will start using the xxx-1.0
release, and xxx-0.9 will fall into disuse, and could ultimately be declared obsolete (no longer sup-
ported) and be archived.

FIGURE 11 illustrates this release logic applied to the openEHR specification repository. The initial
repository is spec-dev, i.e. the main line of development in which all kinds of changes are added. At
some point it will be cloned into spec-0.9, a branch for the 0.9 release of the openEHR specifications.
The only changes permitted to be done to the spec-0.9 repository are those that fix bugs or problems
designated to be fixed in release 0.9. At a later point in time, a spec-1.0 repository is created.

The changes made to the spec-0.9 and spec-1.0 repositories may be transmitted one at a time back to
spec-dev, by systematic patching, or cumulative patches may be made. Patches may also be made
from spec-0.9 to spec-1.0.

How: The Bitkeeper tools facilitate controlled patching by defining a “level” number for each
repository: a lower level repository cannot transmit (“push”, in BitKeeper terminology)
changes to a higher level repository.

Thus, the repositories spec-dev, spec-0.9 and spec-1.0 could be assigned levels 1, 5, and 9 respec-
tively to get this effect (and to allow for possible interior releases not originally planned).

xxx-dev

xxx-relA

FIGURE 10 Branching

main line
development
for proj xxx

any change

production fixes only

branch operation

release A
branch

repository

patch

testing changes only
patch

clone

spec-dev

FIGURE 11 openEHR Release Structure for spec repository

spec-0.9

spec-1.0

clone

patch

patch

patch

clone
Date of Issue:04 Feb 2005 Page 20 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan Release Management
Rev 0.8
5.3 Interior Versions
Minor releases, i.e. named baselines, can be identified within a major release, as is often done with
commercial products. For example, if there was a “jaguar” release of a product, minor releases might
be “jaguar A”, or “jaguar Q1 2005” and so on. In openEHR, such baselines are named by tagging the
repository as it is at a point in time, with a name, usually based on the date, such as “july2003”. How-
ever, the name could be anything that suits the development process and user community. Baselines
are not declared as major releases but are otherwise the same, and are known points in the history of
the deliverables with which developers always work.

5.4 Tag Names
The only differences between major and minor releases in BitKeeper repositories used by openEHR
is the form of the tag names, and the fact that for major releases, a branch (clone) operation has been
done to create separate repositories.

Major releases of the specification project are known by tags of the form:

• release-0.9
• release-1.0
• release-1.2
• release-2.0

Interior versions are known by any other string not starting with “release”, but tend to be of the form:

• jan2004
• jun2004

and so on.

Release names of BitKeeper implementation repositories should also follow the pattern “release-
xxx”, in order to facilitate automatic processing by scripts etc.
Author: {T Beale} Page 21 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

Change Management The openEHR Technical Change Management Plan
Rev 0.8
6 Change Management

6.1 Overview
The approach to change management described here has been developed from change management
plans used in a number of industrial contexts. Useful published resources for interested readers
include the IEEE standards for configuration management, change management and related issues. A
good online resource explaining is at XXXX (software engineering home page, CM top page).

FIGURE 12 illustrates the overall openEHR change environment. For each project, a repository that
is controlled by the configuration management (CM) system, and whose items (documents, source,
etc) are created and modified by project groups (PGs). The entire openEHR community can access
the repository for retrieval, or “copy-out”. Those developers in identified project groups can perform
modifications to the controlled items according to the process described below. All community mem-
bers can raise Problem Reports, and those members in an openEHR team can raise Change Requests.

The key elements of this environment are as follows.

Repository
The repository of deliverables (centre). Includes all documents, software source, and related informa-
tion needed to recreate a deliverable from scratch.

The Configuration Management (CM) system
The system controlling access to the repository, performs versioning of controlled items, release iden-
tification, and manages change requests. The CM system enables any previous version of the reposi-
tory to be obtained. Implemented in openEHR using BitKeeper and various online change request and
problem reporting tools.

Project Group (PG)
Formally constituted team that is responsible for the development of deliverables of the project.
These teams can be considered “formal” developers in the sense that they are defined users in the CM
system and can execute a change via a check-out / modify / validate / check-in sequence. The project

users

CM system

PG

repository

ARB

check

copy-out

FIGURE 12 openEHR change model for reference projects

out
check

in

download

(source)

build
server

crossload
Date of Issue:04 Feb 2005 Page 22 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

http://wwwis.win.tue.nl:8080/2R690/se_cont.html
http://wwwis.win.tue.nl:8080/2R690/cm_chang.html

The openEHR Technical Change Management Plan Change Management
Rev 0.8
group can raise Problem Reports (PRs) and Change Requests (CRs) at any time and are also responsi-
ble for preliminary review of non-trivial PRs and CRs according to the change management process
described below.

The User Community
The openEHR community at large, consisting of any user or interested person or organisation. Users
in the community who are not in the informal or formal development pool, can copy-out all delivera-
bles and can raise PRs. Users who are not otherwise developers or technically involved in any way
typically only download binary software builds.

The Architectural Review Board (ARB)
The ARB is formally constituted of experts from diverse backgrounds, and operates according to the
openEHR ARB Terms of Reference. Its main activity is the review of major CRs, according to the
change management process described below. The ARB does not create PRs or CRs, and it does not
review PRs, being concerned only with change. (Naturally there may be some members of the ARB
who, in their role as a PG member may create PRs and CRs).

6.2 The Change Process
This section describes in detail the change process that applies to openEHR projects. However, read-
ers do not need to know all the details to work on a project - the following processes and documenta-
tion are generally supported by online tools that ensure that the process is easy to participate in and
follow.

6.2.1 Overview
Changes are made to a repository by members of the relevant project group. All changes have a
Change Request (CR). A CR can only be raised by someone in the project group, and is the key
document in the change process, being used to record all status and analysis information relating to
the change from its opening to rejection or resolution. CRs are raised either to fix problems, or to per-
form enhancements to a component. A CR that is designed to fix a problem may refer to existing PRs
(usually problems reported in released binaries by users), or the problem may simply be documented
in the CR itself (typically the case when a developer finds a problem).

A PR is raised describing in detail a problem or deficiency in a component or product, as perceived by
a user (including developers acting as testers). Such descriptions tend to be at a coarse granularity of
component or functionality, and only about main releases. A PR can be created by anyone. A PR cor-
responds to a “black-box” view of the product or component - the raiser doesn’t care how it is imple-
mented, only that it is not working properly. Problem Reports have a simple lifecycle: they are raised,
then either rejected or resolved. If not rejected, a PR is always resolved by one or more CRs. A CR
may resolve one or more PRs. FIGURE 13 illustrates the relationship between PRs and CRs within
the user and developer spaces respectively.

The scope of CR is always a whole repository (i.e. a whole project) even if it changes only a single
file. In many cases, a CR causes changes in one project (e.g. the specification project) that will need
to be taken into account in another repository (e.g. one of the implementation projects). It is up to the
managers of each project to decide on an appropriate moment to incorporate the relevant changes in
their repository.

6.2.2 Problem Reporting
New Problem Reports (PRs) are created by users. They are reviewed initially be the relevant project
group, and are either rejected or cause the creation of one or more new CRs, or the modification of
Author: {T Beale} Page 23 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

Change Management The openEHR Technical Change Management Plan
Rev 0.8
existing CR(s). Any CR related to a PR in this way should include the PR id in its
problem_description. The CR then enters the process described below. If the CR is implemented and
solves the problem, any PR(s) referred to in its problem_description section are progressed to the
resolved state. FIGURE 14 illustrates the PR lifecycle.

6.2.3 Change Request Process for openEHR Reference Projects
This section describes a change process in which a board of review as well as the project group proc-
esses CRs. In openEHR, this process is applied to all reference projects, and any ad hoc projects
requiring more disciplined change control.

6.2.3.1 Workflow
A new CR created by any project developer, and may be due the review of one or more PRs. The
process of handling a CR in a project using a review board is illustrated by FIGURE 15. If a CR is not
rejected at some point, it is eventually implemented, causing changes in the appropriate repository.

Assuming sufficient repository-wide quality controls are applied before a CR is closed (such as docu-
ment review, guaranteeing that change source compiles, builds and runs, and so on), the repository is
always guaranteed to move from one self-consistent state to another self-consistent state - there are no
inconsistent states. This also means that every version of the repository is the product of some initial
state plus the application of a known list of CRs. In this way, the quality of the repository is main-
tained.

FIGURE 13 Relationship between PRs and CRs

User space Development space

prod X
rel 1.5

prod Y
rel mar2004

PR

PR
PR
PR
PR

PR
PR

PR

PR
release

release
CR

CR
CR

CR

CR

CR

CR
lifecycle

PR
lifecycle

initial

underway

rejected

resolved

FIGURE 14 PR Lifecycle

PG rejects

PG rejectsPG accepts

relevant CRs
completed
Date of Issue:04 Feb 2005 Page 24 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan Change Management
Rev 0.8
6.2.3.2 CR Lifecycle
Each CR follows the lifecycle illustrated in FIGURE 16. The lifecycle is effectively the CR-centric
view of what happens during the change process shown in FIGURE 15. Most CRs proceed through
the states initial, analysis, implementation, v_and_v (“verification and validation”) to completed. On
the way, some may be rejected; others may require ARB analysis and approval before being allowed
to proceed. Some CRs may be discovered to be unimplementable during implementation, which will
lead to them being put back in the analysis state, from which they might be rejected. Occasionally a
CR may be superseded by a more recent decision; this is reflected in the transitions leading to the
superseded state. The V&V state is so named because it covers both the testing software and review-
ing documents.

Review Review

PG Analysis

Approve

Review/Test

ReviewProject
Group

reject

cat := implem

< N hrs?

yes

no
cat := unknown

cat := req/arch

impact anal := xx impact anal := xx

owner := ARB

owner := PG

owner := CMS

prob_desc := xx

id := xx
title := xx

originator := xx
owner := CMS
state := initial

state := ARB_analysis

state := implementation

fail

state := rejected
owner := CMS

reject

state := rejected
owner := CMS

reject

state := rejected
owner := CMS

state := implementation

state := v_and_v

Announce/

state := completed

distribute

state := PG_analysis
owner := PG

target_release := xx

target_release := current

new
PR

FIGURE 15 openEHR Change Request Process for reference project

Board

chg_desc := xx

Community

Review
reject

state := rejected

yes

new
CR(s)

valid

owner := ARB

pass

test_release := xx

test_release := current

assigned_to := <someone>
assigned_to := <someone>

Implement
Change

state := implementation

chang_desc := xxxchang_desc := xxx

Promote
Changes

ARB Analysis
Author: {T Beale} Page 25 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

Change Management The openEHR Technical Change Management Plan
Rev 0.8
When it is decided that a CR will be progressed, it also has to be decided which release the final
changes are intended for, and in which release the changes will be made for testing. If the former is
production release 1.5, the latter will be the corresponding development release, which must be in
test-only mode.

6.2.3.3 Project Group-managed CRs
Many CRs are for trivial problems such as errors in documentation, incorrectly defined elements of
specifications, or small software bugs. The CRs are managed by the relevant project group. The PG
assigns the CR to someone (or someone self-nominates). All further changes to the CR are under-
taken by the person to whom the CR is assigned to. The CR is analysed, and if the work to execute
it is within the current resources of the PG, it can be carried out. If the work is greater, or it is realised
that it is a more serious category of change, the CR is passed to the ARB, by setting owner=ARB. For
CRs that remain with the project group, the process is as follows:

• Implementation is done in the test release indicated in the CR; when deemed complete, the
state is set to v_and_v, and the changes are tested/reviewed. If rejected, the CR state reverts
to implementation, and further changes are made, according to the test_outcome field.

• When implementation and verirification is complete, the changes are promoted into the
repository of the target release indicated in the CR.

6.2.3.4 Review Board-managed CRs
Any CR whose category is requirements or architecture, or for which the work to do the change is sig-
nificant, is reviewed by the ARB. The review process is as follows:

• a CR normally has an initial problem description (that may refer to one or more PRs) and
change description; there may also be the beginnings of an impact analysis

• the CR goes to the ARB with owner=ARB and state=analysis

initial

PG_analysis

rejected

implementation

v_and_v

completed

ARB_analysis

FIGURE 16 CR Lifecycle

PG rejects

ARB rejectsPG rejectsPG review

cat = error
& cost of implem low

cat = design
 or req’ts ARB approves

v&v commences v&v failed

v&v passed

superseded

other CR
supersedes

implem
not possible

any state
Date of Issue:04 Feb 2005 Page 26 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan Change Management
Rev 0.8
• the ARB assgins from among its members someone to manage the CR. This person
becomes reponsible for progressing the CR through its lifecycle. All further changes to the
CR are undertaken by the CR’s assignee.

• the ARB members review the CR, and propose changes to the change_description,
impact_analysis, target_release and test_release. An estimate of time & resources for the
work is done, either by the ARB, or by asking a relevant non-ARB person.

• The CR assignee makes changes based on the input, and sets the state to awaiting_approval;
• The ARB either:

- approves the CR (by simple majority vote), in which case it is implemented, tested
and the changes incorporated into the relevant repository; or

- it proposes further changes. Such changes might include setting the target and/or
test releases to be some later release, or an experimental one, in order to remove
risk to established deliverables; or

- it discovers that it cannot reach a consensus on the proposed changes as
documented in the change_description (e.g. there might be a modelling issue) or
impact_analysis (there might be disagreement on how the change will affect real
systems). In this case, the ARB agrees to:

* hold a physical meeting or telephone conference to resolve the issue;
* co-opt expert assistance;
* seek input from the community input

• The CR assignee is responsible for ensuring that by one means or another, the CR is pro-
gressed, either to the point where it will be implemented in some release, or else it is
rejected.

• When it has been decided that implementation will occur, the owner field will be set to PG
and the state to implementation. In the case of documents or specifications, this simply
means that the changes will be made to the documents.

• Implementation is done by the relevant project group in the test release indicated in the CR;
when deemed complete, the state is set to v_and_v, and the changes are reviewed by the
ARB. If rejected, the CR state reverts to implementation, and further changes are made,
according to the test_outcome field.

• When implementation and verirification is complete, the changes are promoted into the
repository of the target release indicated in the CR.

Note that CRs are visible to the openEHR community for open inspection online, with an indication
of intended dates of resolution & how to communicate a response to the ARB.

6.2.4 Change Request Process for ad hoc Projects
This section describes a change process that is used on non-reference (typically smaller) projects,
where no formal board of review exists.

6.2.4.1 Workflow
A new CR created by any project developer, and may be due the review of one or more PRs. The
process of handling a CR in a project with no review board is illustrated by FIGURE 15. If a CR is
not rejected at some point, it is eventually implemented, causing changes in the appropriate reposi-
tory.
Author: {T Beale} Page 27 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

Change Management The openEHR Technical Change Management Plan
Rev 0.8
6.2.4.2 CR Lifecycle
The CR lifecycle, illustrated in FIGURE 18, is similar to the review board case, except that all deci-
sions are taken by the project group (PG).

6.2.4.3 CR Management
CRs in the no review board situation are all managed by the project group, using the same steps unde-
taken by the PG and ARB in the review board case.

Review

Analysis

Review/Test

Promote Changes

Project
Group

reject

impact analysis := xx

owner := CMS

prob_desc := xx

id := xx
title := xx

originator := xx
owner := CMS
state := initial

fail

state := rejected
owner := CMS

state := implementation

state := v_and_v

Announce/

state := completed

distribute

state := PG_analysis
owner := PG

target_release := xx

new
PR

FIGURE 17 openEHR Change Request Process with no review board

chg_desc := xx

Community

Review
reject

state := rejected

new
CR(s)

valid

pass

test_release := xx

assigned_to := <someone>

Implement
Change

state := implementation
Date of Issue:04 Feb 2005 Page 28 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan Change Management
Rev 0.8
initial

analysis

rejected

implementation

v_and_v

completed

FIGURE 18 Simple CR Lifecycle

PG rejects

PG rejectsPG review

v&v commences

v&v failed

v&v passed

superseded
new change
supersedes

problem
with implem
Author: {T Beale} Page 29 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

Tools The openEHR Technical Change Management Plan
Rev 0.8
7 Tools

7.1 Overview
The following figure illustrates the tool environment supporting openEHR development projects.

kernel project

adl_parser project

CRs - plone db
openEHR-spec

PRs - plone db
openEHR-pr

CRs - plone db
openEHR-adl_parser

CRs - plone db
openEHR-kernel

openEHR developer spaceuser space

FIGURE 19 Tool Environment of openEHR projects

BK
repo

spec project

openEHR
Problem Reporting

xxx project
CRs - plone db
openEHR-xxx

BK
repo

BK
repo

BK
repo

facility

Build
server
(linux)

Build
server

(windows)

Build
server
(mac)

users

testers

distribution
server
Date of Issue:04 Feb 2005 Page 30 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan Tools
Rev 0.8
7.2 Configuration Management System
The CM system is the primary tool that supports the change process. openEHR uses BitKeeper for
configuration management. Detailed instructions for BitKeeper appear under the “development” link
on the openEHR website. The master repositories for the openEHR projects are hosted by BitMover,
the developers of BitKeeper, as a free service. BitKeeper is used by openEHR under the “open log-
ging licence”, which allows free use for truly open source projects. All change set commits are logged
to a public server.

Distributed Working
Developers can easily work in a distributed manner using BitKeeper, because each developer obtains
a complete copy of a repository - including all its versions. Unlike server-based CM models like CVS
and Subversion, BitKeeper allows developers to obtain updates from a master repository when they
want, or to push changes when they want. They can work for long periods of time with their own
copy of the repository, because each copy is in fact a complete clone of the master. Merging is taken
care of by the BitKeeper software, and conflicts are flagged to the user interactively. In general, well-
planned projects minimise update conflicts.

7.3 PR / CR Database
PRs and CRs are managed on a project by project basis, using customised instances of the Plone Issue
Collector in a Plone/Zope database at openEHR.org.

7.4 Publishing/Distribution
Author: {T Beale} Page 31 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

CI Identification The openEHR Technical Change Management Plan
Rev 0.8
8 CI Identification
Configuration items in openEHR repositories are generally known simply by their path. The CM
tools automatically generate unique, immutable identifiers, which are reliable, regardless of where the
file might be moved.

Documents
Documents can be identified using an identifier of the following form:

document_id = <artifact_id>

Where the fields are defined as:

• artifact_id: id corresponding to the subject of document, e.g. “ehr_im” (EHR information
model)

Example document identifiers are as follows:
• ehr_im
• common_im

Document source files will always have names independent of their version, and that might vary
according to which tool is used to produce them. Documents may be stored and distributed in various
file formats, e.g. Adobe PDF, HTML etc. File names of documents generated for dissemination are of
the form:

<document_id>.<extension>

Where it is more convenient (or it would cause problems with some tools), dots may be replaced by
underscores in version numbers. Examples include:

• ehr_im.pdf -- Adobe PDF file
• common_im.html -- HTML file

Computable Artifacts
All computable artifacts whether abstract or derived are identified by a file name of the form:

<artifact_id>.<extension>

Neither the project id nor the version id are incorporated in the identifier. The former is redundant in
such files, while the latter prevents automatic replacement of a previous version by a later version.

Examples include:
• ehr_im.idl -- IDL file
• common_im.xmi -- XMI file
• datatypes_am.xsd -- X-schema file

Programming language files will almost always be named according to a class name or something
similar.
Date of Issue:04 Feb 2005 Page 32 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan Forms
Rev 0.8
Appendix A Forms

A.1 Problem Report Form

A.2 PR Form Fields
Field Value

pr_id id of form “PR_nnnnnn”
date_raised yyyy-MM-dd
title text
raiser name <email address>
state opened, review, resolved, rejected
priority Assigned by openEHR; values from 1, 2, 3
severity critical, high, moderate, low
related CRs List of CR ids for CRs
component_id identifiers of released component manifesting problem
problem_description text - problem as perceived by user
date_closed yyyy-MM-dd
resolution_description text
notes text

 openEHR PROBLEM REPORT

ID <pr_id> Date Raised: <date>

<Title>

RAISER: <person> STATE: <state>
*PRIORITY: <priority>
SEVERITY: <severity>

[RELATED_CRs: <related CRs>]

PROBLEM DESCRIPTION

COMPONENT: <component_id>
PROBLEM_DESCRIPTION: <text>

RESOLUTION

Date Closed: <date>
RESOLUTION_DESCRIPTION: <text>

NOTES: <notes>
Author: {T Beale} Page 33 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

Forms The openEHR Technical Change Management Plan
Rev 0.8
A.3 Change Request Form

A.4 CR Form Fields
Field Value

id CR_nnnnnn
date_raised yyyy-MM-dd
title text
raiser name <email address>

 openEHR CHANGE REQUEST

ID <cr_id> Date Raised: <date>
 <Title>

RAISER: <person>

OWNER: <CMS | PG | ARB> STATE: <state>
ASSIGNED_TO: <person>

PROBLEM DESCRIPTION: [text | <list of PR ids>]
[Dependencies: <list of CR ids>]

CHANGE DESCRIPTION

CATEGORY: <category: documentation | error | design | requirements>

IMPACT ANALYSIS: <text>
ANALYST: <person>
CHANGE DESCRIPTION: <text>

COMPONENTS AFFECTED:
<change_component, version>
...

APPROVED by: <person>
IMPLEMENTOR: <person>

TARGET Release: <baseline id>

VERIFICATION & VALIDATION

TEST Baseline: <baseline id>
Test Outcome: <text>

RESOLUTION
Date Closed: <date>
[Reason for Rejection: <text>]

NOTES: <notes>
Date of Issue:04 Feb 2005 Page 34 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan Forms
Rev 0.8
owner CMS (config mgt system), PG (project group), ARB
assigned_to name of ARB member responsible for progressing the CR
state initial, rejected, PG_analysis, ARB_analysis, implementation, v_and_v,

completed, superseded
problem
description

text description, or else reference to list of ids of PRs generating this CR

dependencies list of ids of CRs whose completion is required for the completion of this CR

category documentation, error, design, requirements
impact_analysis text describing impact on rest of release
analyst name <email address>
change_description text describing what should be changed
items affected list of items
approved by name <email address>
implementor name <email address>
target release release by which this CR must be resolved
test baseline release in which changes due to this CR will first appear for testing
test outcome either “passed”, or a reason for test failure
date closed date on which CR was completed
reason for rejection text

Field Value
Author: {T Beale} Page 35 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

Forms The openEHR Technical Change Management Plan
Rev 0.8
Date of Issue:04 Feb 2005 Page 36 of 37 Author: {T Beale}

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

The openEHR Technical Change Management Plan
Rev 0.8

Author: {T Beale} Page 37 of 37 Date of Issue:04 Feb 2005

© 2003-2005 The openEHR Foundation
email: info@openEHR.org web: www.openEHR.org

END OF DOCUMENT

	The openEHR Technical Change Management Plan
	Copyright Notice
	Amendment Record
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Status
	1.4 Terms and Acronyms

	2 Overview
	2.1 Activities
	2.2 Management

	3 openEHR Technical Projects
	3.1 The Specification project
	3.2 Reference Implementation Projects
	3.3 Ad hoc Implementation Projects

	4 Repository Organisation
	4.1 Repository Naming
	4.2 Directory Structure

	5 Release Management
	5.1 Overview
	5.2 Release Structure and Branching
	5.3 Interior Versions
	5.4 Tag Names

	6 Change Management
	6.1 Overview
	6.2 The Change Process
	6.2.1 Overview
	6.2.2 Problem Reporting
	6.2.3 Change Request Process for openEHR Reference Projects
	6.2.3.1 Workflow
	6.2.3.2 CR Lifecycle
	6.2.3.3 Project Group-managed CRs
	6.2.3.4 Review Board-managed CRs

	6.2.4 Change Request Process for ad hoc Projects
	6.2.4.1 Workflow
	6.2.4.2 CR Lifecycle
	6.2.4.3 CR Management

	7 Tools
	7.1 Overview
	7.2 Configuration Management System
	7.3 PR / CR Database
	7.4 Publishing/Distribution

	8 CI Identification
	Appendix A Forms
	A.1 Problem Report Form
	A.2 PR Form Fields
	A.3 Change Request Form
	A.4 CR Form Fields

