
The openEHR Archetype Profile
Rev 0.5

Editors:T Beale
ARCHETYPE MODEL

The openEHR Archetype Profile

Editors:T Beale1

Revision: 0.5

Pages: 25

1. Ocean Informatics Australia
Page 1 of 25 Date of Issue: 5 Feb 2005

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

© 2005 The openEHR Foundation

The openEHR foundation
is an independent, non-profit community, facilitating the creation and sharing

of health records by consumers and clinicians via open-source, standards-
based implementations.

email: info@openEHR.org web: http://www.openEHR.org

Founding
Chairman

David Ingram, Professor of Health Informatics, CHIME, University
College London

Founding
Members

Dr P Schloeffel, Dr S Heard, Dr D Kalra, D Lloyd, T Beale

Patrons To Be Announced

The openEHR Archetype Profile
Rev 0.5
Copyright Notice

© Copyright openEHR Foundation 2001 - 2005
All Rights Reserved

1. This document is protected by copyright and/or database right throughout the
world and is owned by the openEHR Foundation.

2. You may read and print the document for private, non-commercial use.
3. You may use this document (in whole or in part) for the purposes of making

presentations and education, so long as such purposes are non-commercial and
are designed to comment on, further the goals of, or inform third parties
about, openEHR.

4. You must not alter, modify, add to or delete anything from the document you
use (except as is permitted in paragraphs 2 and 3 above).

5. You shall, in any use of this document, include an acknowledgement in the form:
"© Copyright openEHR Foundation 2001-2005. All rights reserved. www.openEHR.org"

6. This document is being provided as a service to the academic community and on
a non-commercial basis. Accordingly, to the fullest extent permitted under
applicable law, the openEHR Foundation accepts no liability and offers no
warranties in relation to the materials and documentation and their content.

7. If you wish to commercialise, license, sell, distribute, use or otherwise copy
the materials and documents on this site other than as provided for in
paragraphs 1 to 6 above, you must comply with the terms and conditions of the
openEHR Free Commercial Use Licence, or enter into a separate written agreement
with openEHR Foundation covering such activities. The terms and conditions of
the openEHR Free Commercial Use Licence can be found at
http://www.openehr.org/free_commercial_use.htm
Date of Issue: 5 Feb 2005 Page 2 of 25 Editors:T Beale

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Archetype Profile
Rev 0.5
Amendment Record

Acknowledgements
The work reported in this paper has been funded by a number of organisations, including The Univer-
sity College, London; Ocean Informatics Pty Ltd, Australia.

Issue Details Who Date

0.5 CR-000127. Restructure archetype specifications.
Initial Writing.

T Beale 5 Feb 2005
Editors:T Beale Page 3 of 25 Date of Issue: 5 Feb 2005

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Archetype Profile
Rev 0.5
Date of Issue: 5 Feb 2005 Page 4 of 25 Editors:T Beale

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Archetype Profile
Rev 0.5
Table of Contents

1 Introduction.. 7
1.1 Purpose...7
1.2 Related Documents ..7
1.3 Status..7
1.4 Peer review ..7

2 Overview ... 9
2.1 Design Background..9
2.2 Package Structure...9

3 Data_types.basic Package ..11
3.1 Class Descriptions..11
3.1.1 C_DV_STATE Class ...11
3.1.2 STATE_MACHINE Class ...12
3.1.3 STATE Class ..12
3.1.4 TRANSITION Class..12

4 Data_types.text Package.. 14
4.1 Overview..14
4.2 Requirements ...14
4.3 Design ..15
4.3.1 Standard ADL Approach ...15
4.3.2 Terminology-specific Code Constraints ..16
4.3.3 Terminology-neutral Code Constraints..16
4.4 Pre-evaluation ..17
4.5 Class Descriptions..17
4.5.1 C_DV_CODED_TEXT Class ...18

5 Data_types.quantity Package.. 19
5.1 Overview..19
5.2 Ordinal Type Constraint...19
5.2.1 C_DV_ORDINAL Class Definition..20
5.3 Quantity Type Constraint ...20
5.3.1 Constraining Units...22
5.3.2 C_DV_QUANTITY Class Definition ...22
5.3.3 C_DV_QUANTITY_ITEM Class Definition23
Editors:T Beale Page 5 of 25 Date of Issue: 5 Feb 2005

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Archetype Profile
Rev 0.5
Date of Issue: 5 Feb 2005 Page 6 of 25 Editors:T Beale

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Archetype Profile Introduction
Rev 0.5
1 Introduction

1.1 Purpose
This document describes the openEHR Archetype Profile (AP), which defines custom constraint
classes for use with the generic archetype object model (AOM). The intended audience includes:

• Standards bodies producing health informatics standards
• Software development organisations using openEHR
• Academic groups using openEHR
• The open source healthcare community
• Clinical and domain modelling specialists.

1.2 Related Documents
Prerequisite documents for reading this document include:

• The openEHR Archetype Definition Language (ADL)
• The openEHR Archetype Object Model (AOM)

1.3 Status
This document is under development, and is published as a proposal for input to standards processes
and implementation works.

The latest version of this document can be found in PDF and HTML formats at
http://www.openehr.org/repositories/spec-dev/latest/publishing/architec-
ture/top.html. New versions are announced on openehr-announce@openehr.org.

1.4 Peer review
Known omissions or questions are indicated in the text with a “to be determined” paragraph, as fol-
lows:

TBD_1: (example To Be Determined paragraph)

Areas where more analysis or explanation is required are indicated with “to be continued” paragraphs
like the following:

To Be Continued: more work required

Reviewers are encouraged to comment on and/or advise on these paragraphs as well as the main con-
tent. Please send requests for information to info@openEHR.org. Feedback should preferably be
provided on the mailing list openehr-technical@openehr.org, or by private email.
Editors:T Beale Page 7 of 25 Date of Issue: 5 Feb 2005

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/top.html
http://www.openehr.org/repositories/spec-dev/latest/publishing/architecture/top.html
mailto:openehr-technical@openehr.org
mailto:openehr-announce@openehr.org
mailto:info@gehr.org
mailto:openehr-technical@openehr.org

Introduction The openEHR Archetype Profile
Rev 0.5
Date of Issue: 5 Feb 2005 Page 8 of 25 Editors:T Beale

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Archetype Profile Overview
Rev 0.5
2 Overview

2.1 Design Background
An underpinning principle of openEHR is the use of archetypes and templates, which are formal
models of domain concepts, used to controlling data structure and content of data. The elements of
this architecture are twofold.

• The openEHR Reference Model (RM), defining the structure and semantics of information
and service interfaces in terms of information models (IMs) and service models (SMs).
These models correspond respectively to the ISP RM/ODP information and computational
viewpoints. The information models define the data of openEHR EHR systems; meaning
that every data instance in a system is an instance of a type defined in the Information Model
(or to be completely correct, the corresponding type in the relevant ITS). The information
model is designed to be invariant in the long term, to minimise the need for software and
schema updates.

• The openEHR Archetype Model (AM), defining the structure and semantics of archetypes
and templates. The AM consists of the archetype language definition language (ADL), the
Archetype Object Model (AOM) and the openEHR Archetype profile (openEHR AP).

The purpose of the ADL is to provide an abstract syntax for textually expressing archetypes and tem-
plates. The AOM defines the object model equivalent, in terms of a UML model. It is a generic
model, meaning that it can be used to express archetypes for any reference model in a standard way.
ADL and the AOM are brought together in an ADL parser: a tool which can read ADL archetype
texts, and whose parse-tree (resulting in-memory object representation) is instances of the AOM.

The purpose of the openEHR Archetype Profile, the subject of this document, is to define custom
archetype classes which replace the use of generic classes for archetyping certain RM classes. By way
of example, consider the openEHR RM type DV_QUANTITY. The generic AOM enables this to be
archetyped with instances of C_COMPLEX_OBJECT and C_ATTRIBUTE. However, this does not
always provide the most useful semantics for expressing constraints on DV_QUANTITY. The problem
is solved by creating a class C_DV_QUANTITY, a class defining custom constraint semantics for
DV_QUANTITY instances, which can be used as an optional replacement for the default
C_COMPLEX_OBJECT and related objects. Custom archetype classes can be defined for any type in
the reference model. A detailed discussion of this example can be found in the openEHR ADL docu-
ment.

2.2 Package Structure
The openEHR Archetype Profile model is defined as the package am.openehr_profile, illustrated
in FIGURE 1. It is shown in the context of the openEHR am and am.archetype packages. The
internal structure of the package mimics the structure of the reference model it profiles, i.e. the
openEHR reference model. This is done to make software development easier, even though the pack-
age structure may be very sparsely populated. In any case, packages need only be defined where there
are custom types to be defined; the only ones currently defined are in the data_types package.
Editors:T Beale Page 9 of 25 Date of Issue: 5 Feb 2005

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Overview The openEHR Archetype Profile
Rev 0.5
FIGURE 1 openehr.am.openehr_profile Package

archetype

am

openehr_profile

data_types data_structures

ehr
Date of Issue: 5 Feb 2005 Page 10 of 25 Editors:T Beale

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Archetype Profile Data_types.basic Package
Rev 0.5
3 Data_types.basic Package
The am.openehr_profile.basic package, illustrated in FIGURE 2, defines custom types for
constraining the RM type DV_STATE.

3.1 Class Descriptions

3.1.1 C_DV_STATE Class

A example of a state machine to model the state of a medication order is illustrated in FIGURE 3.
This state machine is defined by an instance of the class STATE_MACHINE.

CLASS C_DV_STATE

Purpose
Constrainer type for DV_STATE instances. The attribute c_value defines a
state/event table which constrains the allowed values of the attribute value in a
DV_STATE instance, as well as the order of transitions between values.

Inherit C_DATA_VALUE

Attributes Signature Meaning

c_value: STATE_MACHINE

Invariants c_value_exists: c_value /= Void

basic

FIGURE 2 am.openehr_profile.data_types.basic Package

C_DV_ STATE STATE_MACHINE STATE
name: String

TRANSITION
event: String
output: String
next_state: Stringnext_state

0..1
value

1
states

1..*

transitions
1..*

C_DOMAIN_TYPE

PROPOSED ORDERED IN_EXECUTION

CANCELLED SUSPENDEDOVERDUE

COMPLETED
order

suspendcancel, start_fail
supersede

cancel,
supersede

start finish

start

cancel

start

FIGURE 3 Example State Machine for Medication Orders

restart
Editors:T Beale Page 11 of 25 Date of Issue: 5 Feb 2005

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Data_types.basic Package The openEHR Archetype Profile
Rev 0.5
3.1.2 STATE_MACHINE Class

3.1.3 STATE Class

3.1.4 TRANSITION Class

CLASS STATE_MACHINE

Purpose Definition of a state machine in terms of states, transition events and outputs, and
next states.

Use

Attributes Signature Meaning

states: Set <STATE>

Invariants states_valid: states /= Void and then not states.empty

CLASS STATE

Purpose Definition of one state in a state machine.

Use

Attributes Signature Meaning

name: String name of this state

transitions: Set
<TRANSITION>

Invariants transitions_valid: transitions /= Void and then not transitions.empty

CLASS TRANSITION

Purpose Definition of a state machine transition.

Attributes Signature Meaning

event: String Event which fires this transition

guard: String Guard condition which must be true for this
transition to fire

action: String Side-effect action to execute during the fir-
ing of this transition

next_state: STATE Target state of transition
Date of Issue: 5 Feb 2005 Page 12 of 25 Editors:T Beale

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Archetype Profile Data_types.basic Package
Rev 0.5
Invariants
event_valid: event /= Void and then not event.empty
action_valid: action /= Void implies not action.empty
guard_valid: guard /= Void implies not guard.empty

CLASS TRANSITION
Editors:T Beale Page 13 of 25 Date of Issue: 5 Feb 2005

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Data_types.text Package The openEHR Archetype Profile
Rev 0.5
4 Data_types.text Package

4.1 Overview
The am.openehr_profile.data_types.text package contains custom classes for expressing
constraints on instances of the types defined in the rm.data_types.text package. Only one type is cur-
rently defined, enabling the constraining of DV_CODED_TEXT instances. It is illustrated in FIGURE 4.

4.2 Requirements
The primary requirement of constraints on coded terms in archetypes is to be able to state a logical
constraint which does not limit the archetype to only being used with one particular vocabulary; in
other words that constraints on codes not limit the (re)usability of the archetype. With respect to
object models of data, the requirements for constraints on coded terms relate to their use as names and
as values.

Constraints on Names
Where coded names occur in data e.g. in instances of FOLDER.name, SECTION.name, and CLUS-
TER.name, the following types of constraints are needed:

• require the term to be a particular one from a particular terminology, e.g. the ICD10 term
“diabetes mellitus” (here the terminology is not limited to one value set);

• require the term to be any term from a particular terminology constrained by some relation-
ship within the terminology, e.g. “is-a”; for example, “any term in ICD10 which is-a ‘tropi-
cal infection’”;

• require the term to be any term from a particular terminology, e.g. the HL7 PracticeSetting
domain (here the terminology itself is limited to one value set);

Constraints on Values
The second kind of constraint on coded terms is used where terms appear as values. In this case, the
intention is to specify a set of allowed terms, for example blood groups, diagnoses which may be rel-
evant in the particular clinical setting, or the characteristics of a lump on palpation. More complex
constraints specify that the set of terms is the union of two or more groups (the OR operator in que-
ries), or is a member of a number of groups (the AND operator in queries), or even some more com-
plex combination. In all cases, we can think of the constraint as returning a “candidate set of terms”
when evaluated against real terminologies.

FIGURE 4 am.openehr_profile.data_types.text Package

data_types.text

C_DOMAIN_TYPE

C_DV_CODED_TEXT
terminology_id: TERMINOLOGY_ID
code_list: List<String>
subset: String
query: String
Date of Issue: 5 Feb 2005 Page 14 of 25 Editors:T Beale

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Archetype Profile Data_types.text Package
Rev 0.5
A candidate set of terms can be obtained from a terminology in a number of ways. First, via the use of
relationships encoded in the terminology, such as: “X is-a-kind-of coronary disease”, where classifi-
cation relationships such as “is-a-kind-of” are defined in the terminology of interest. Second, by iden-
tifying terms which belong in some kind of group or category. Consider a constraint such as “X has-
category palpable-body-part” which will return the set of terms which describe palpable body parts.
These two methods may be mixed as in “X is-a-kind-of body-part AND has-category palpable”,
which uses both a relationship and a category - and is equivalent to the previous category described.
Note that a constraint like “X is-a-kind-of body-part” is likely to return a long list of body parts, while
the category of “palpable” body-parts would reduce this significantly. Such constraints should only be
specified if there is likely to be a mechanism to implement the categorisation - this might not be in the
terminology but must be available to the terminology service (i.e. it is an addition to the terminology
proper, within the terminological knowledge environment accessible to the terminology service).

Further constraining can be achieved by the use of more boolean relationships on candidate sets pro-
duced by the method above, however it should always be understood that every time this is done, it in
some sense usurps the role of knowledge / terminology. In theory only terminologies and ontologies
can say that more than one candidate set of terms can be meaningfully intersected (AND operator) or
unioned (OR operator) to produce a final meaningful set. However, the current reality is that very few
terminologies implement even a small percentage of the possible knowledge relationships, and such
constraints will indeed need to be made inside archetypes or other parts of the knowledge environ-
ment.

An example of such a constraint is:
X is-a ‘surface body region’ OR (X is-a ‘organ’ AND has-category ‘palpable’)

The general case for value sets of coded terms is nested boolean expressions, where each expression
element is one of the following:

• a particular term
• a named relationship
• a named category

For such expressions to be safe, all terms, relationships and categories must come from the same ver-
sion of the same terminology, or an intentionally designed adjunct to it. This is the only way that
intended meanings can be accessed. To arbitrarily mix terms and relationships from different termi-
nologies is effectively side-stepping the known semantics of each of the systems, and creating value
sets based on semantics not defined by anyone.

4.3 Design

4.3.1 Standard ADL Approach
The generic kind of constraint that can be expressed for the DV_CODED_TEXT type can, like all stand-
ard archetype constraints, only include constraints on the attributes defined in the reference model
type. This is illustrated by the following fragment of ADL:

DV_CODED_TEXT matches {
defining_code matches {

CODE_PHRASE matches {
terminology_id matches {“xxxx”}
code_string matches {“cccc”}

}
}

Editors:T Beale Page 15 of 25 Date of Issue: 5 Feb 2005

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Data_types.text Package The openEHR Archetype Profile
Rev 0.5
}

The standard approach allows the attributes terminology_id and code_string to be constrained inde-
pendently, and would for example, allow terminology_id to be constrained to ICD10|Snomed-
ct|LOINC, while code_string could be constrained to some particular fixed values. However, this
make no sense; codes only make sense within a given terminology, not across them. It also makes no
sense to allow codes from more than one terminology, as terminologies generally have quite different
designs - LOINC and Snomed-CT are completely different in their conception and realisation.

4.3.2 Terminology-specific Code Constraints
A more appropriate kind of constraint for DV_CODED_TEXT instances is for terminology_id to be
fixed to one particular terminology, and for code_string to be constrained to a set of allowed codes; an
empty list indicates that any code is allowed. These semantics are formalised in the class definition,
shown below. The following examples, expressed in the dADL data language, illustrate instances of
C_DV_CODED_TEXT expressing terminology-specific constraints.

• terminology_id = <“ICD10”>
code_list = <[F43.1]> -- post traumatic stress disorder

• terminology_id = <“ICD10”>
subset = <[xxx]> -- acute stress reactions
code_list = <
[F43.00], -- acute stress reaction, mild
[F43.01], -- acute stress reaction, moderate
[F32.02] -- acute stress reaction, severe
>

• terminology_id = <“SNOMED-CT”>
subset = <[xxx]> -- body structures

4.3.3 Terminology-neutral Code Constraints
The above approach to constraining term codes is only applicable when the particular terminology
mentioned in the constraint is really the only sensible one for the purpose, and would not compromise
the reusability of the archetype by the widest possible audience. It may be reasonable to constrain a
value field in a particular archetype to e.g. an ICD10 code for “chronic obstructive pulmonary disease
(COPD)”; this may be accepted globally as the right thing to do (given that one can reasonably call
ICD10 a terminology of global availability and applicability). However, using e.g. LOINC codes for
lab analyte names might not be appropriate - it may be accepted in the US and other countries using
LOINC for laboratory result encoding, but probably not elsewhere.

A more sophisticated way of constraining codes is therefore needed for this situation. This can be
done in three ways:

• defining coded terms inside the archetype itself - i.e. treating the archetype as a micro-
vocabulary;

• without referring to any vocabulary at all (and assuming that the binding to a particular
vocabulary would be done at some other place in the computing environment);

• or by allowing bindings to multiple vocabularies/terminologies to be explicitly stated some-
where in the archetype.

Archetype-local Codes
A relatively simple of way of using particular coded terms in the archetype, while guaranteeing that
the archetype is re-usable is simple to define such terms in the archetype ontology and use them. This
Date of Issue: 5 Feb 2005 Page 16 of 25 Editors:T Beale

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Archetype Profile Data_types.text Package
Rev 0.5
treats the archetype as a small vocabulary in its own right, and avoids the problem of the mess of ter-
minologies in the real world.

The following ADL examples illustrate the use of archetype-local coded terms:
code matches {[local::at0016]}

code matches {[hl7_ClassCode::EVN, OBS]}

code matches {
[local::

at1311, -- Colo-colonic anastomosis
at1312, -- Ileo-colonic anastomosis
at1313, -- Colo-anal anastomosis
at1314, -- Ileo-anal anastomosis
at1315] -- Colostomy

}

These can all be represented as instances of the class C_DV_CODED_TEXT by simply setting
terminology_id to “local”.

Abstract Inline Queries
The second approach above implies some kind of abstract terminology query language. Currently, no
definitive language for this purpose exists, although there is research in this area. The
C_DV_CODED_TEXT model above accommodates this as a future possibility, with the query attribute,
which would allow a query to some service to be expressed.

External bindings in the Archetype Ontology
The third approach above is already provided for in archetypes, via the use of “ac” coded nodes refer-
ring to concrete queries to particular terminologies, stored in the archetype ontology section. An
equivalent query can be expressed for any number of terminologies by this method. Nothing is
needed in the C_DV_CODED_TEXT type to support this, since a CONSTRAINT_REF object is used
instead (see the openEHR AOM). An example in ADL of the use of “ac” codes is:

code matches {[ac0016]} -- type of respiratory illness
property matches {[ac0034]} -- acceleration

Here, the [acNNNN] codes might refer to queries into a terminology and units service, respectively,
such as the following (in dADL):

items(“ac0016”) = <query(“terminology”, “terminology_id = ICD10AM and ...”)
items(“ac0034”) = <query(“units”, “X matches ‘DISTANCE/TIME^2’”)

4.4 Pre-evaluation
An archetype containing instances of C_DV_CODED_TEXT could be evaluated in advance against a
terminology, to generate the actual sets of candidate terms, allowing the populated archetype to be
distributed and used for coding even by sites without access to coding systems.

To Be Continued:

4.5 Class Descriptions
Editors:T Beale Page 17 of 25 Date of Issue: 5 Feb 2005

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Data_types.text Package The openEHR Archetype Profile
Rev 0.5
4.5.1 C_DV_CODED_TEXT Class

CLASS C_DV_CODED_TEXT

Purpose

Express constraints on instances of DV_CODED_TEXT. The attributes
terminology_id, code_list and subset are to be used when a particular terminol-
ogy is targetted. The attribute query is reserved for future possible use, where
abstract queries might be possible, which do not mention any terminology. If
query is used, the other attributes have no meaning. Only one of the
terminology_id and query attributes can be non-void.

Use

Inherit C_DOMAIN_TYPE

Attributes Signature Meaning

terminology_id:
TERMINOLOGY_ID

Syntax string expressing constraint on
allowed primary terms

code_list: List<String> List of codes; may be empty

subset: String Optional name of subset in terminology
from which codes must come. Only useful
for terminologies which support subsetting.

query: String Constraint in terms of an abstract query
expression to be addressed to a terminology
server.

Invariants

Terminology_id_valid: terminology_id /= Void implies not
(terminology_id.is_empty or code_list = Void)
Subset_valid: subset /= Void implies not subset.is_empty
General_validity: terminology_id /= Void xor query /= Void
Any_allowed_validity: code_list.is_empty implies any_allowed
Date of Issue: 5 Feb 2005 Page 18 of 25 Editors:T Beale

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Archetype Profile Data_types.quantity Package
Rev 0.5
5 Data_types.quantity Package

5.1 Overview
The am.openehr_profile.data_types.quantity package is illustrated in FIGURE 5. Two
custom types are defined: C_DV_QUANTITY and C_DV_ORDINAL.

5.2 Ordinal Type Constraint
An ordinal value is defined as one which is ordered without being quantified, and is represented by a
symbol and an integer number. The DV_ORDINAL class can be constrained in a generic way in ADL
as follows:

item matches {
ORDINAL matches {

value matches {0}
symbol matches {

CODED_TEXT matches {
code matches {[local::at0014]} -- no heartbeat

}
}

}
ORDINAL matches {

value matches {1}
symbol matches {

CODED_TEXT matches {
code matches {[local::at0015]} -- less than 100 bpm

}
}

}
ORDINAL matches {

value matches {2}
symbol matches {

CODED_TEXT matches {
code matches {[local::at0016]} -- greater than 100 bpm

}

FIGURE 5 am.openehr_profile.datatypes.quantity Package

data_types.text

C_DOMAIN_TYPE

C_DV_QUANTITY
property: String

C_QUANTITY_ITEM
magnitude: Interval<Real>
units: String

C_DV_ORDINAL list

0..*

list 0..*

DV_ORDINAL
Editors:T Beale Page 19 of 25 Date of Issue: 5 Feb 2005

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Data_types.quantity Package The openEHR Archetype Profile
Rev 0.5
}
}

}

The above says that the allowed values of the attribute value is the set of ORDINALs represented by
three alternative constraints, each indicating what the numeric value of the ordinal in the series, as
well as its symbol, which is a CODED_TEXT.

A more efficient way of representing the same constraint is using the following ADL syntax:
item matches {0:[local::at0014], 1:[local::at0015], 2:[local::at0016]}

In the above expression, each item in the list corresponds to a single ORDINAL, and the list corre-
sponds to an implicit definition of an ORDINAL type, in terms of the set of its allowed values. The
object equivalent of this syntax is given by the custom class C_DV_QUANTITY, which efficiently
allows a DV_QUANTITY to be constrained in terms of a set of DV_ORDINALs.

5.2.1 C_DV_ORDINAL Class Definition

5.3 Quantity Type Constraint
Another situation in which standard ADL falls short is when the required semantics of constraint are
different from those provided by the standard approach. Consider a simple type QUANTITY, shown at
the top of FIGURE 6, which could be used to represent a person’s age in data. A typical ADL con-
straint to enable QUANTITY to be used to represent age in clinical data is shown below, followed by its
expression in ADL. The only way to do this in ADL is to use multiple alternatives. While this is a per-
fectly legal approach, it makes processing by software difficult, since the way such a constraint would
be displayed in a GUI would be factored differently.

A more powerful possibility is to introduce a new class into the archetype model, representing the
concept “constraint on QUANTITY”, which we will call C_QUANTITY here. Such a class fits into the
class model of archetypes (described in the openEHR Archetype Model document), inheriting from
the class C_DOMAIN_TYPE. The C_DV_QUANTITY class is illustrated in FIGURE 7, and corresponds to
the way constraints on QUANTITY objects are expressed in user applications, which is to say, a prop-
erty constraint, and a separate list of units/magnitude pairs.

The question now is how to express a constraint corresponding to this class in an ADL archetype. The
solution is logical, and uses standard ADL. Consider that a particular constraint on a QUANTITY must

CLASS C_DV_ORDINAL

Purpose Class specifying constraints on instances of DV_ORDINAL. Custom constrainer
type for instances of DV_ORDINAL.

Inherit C_DV_ORDERED

Attributes Signature Meaning

list: Set<DV_ORDINAL> Set of allowed DV_ORDINAL values.

Invariants
Date of Issue: 5 Feb 2005 Page 20 of 25 Editors:T Beale

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Archetype Profile Data_types.quantity Package
Rev 0.5
be an instance of a C_QUANTITY; which can be expressed at the appropriate point in the archetype in
the form of a section of dADL - the data syntax used in the archetype ontology.

This approach can be used for any custom type which represents a constraint on a reference model
type. The rules are as follows:

• the dADL section occurs inside the {} block where its standard ADL equivalent would have
occurred (i.e. no other delimiters or special marks are needed);

• the dADL section must be ‘typed’, i.e. it must start with a type name, which should be a
rule-based transform of a reference model type (as described in Adding Type Information on
page 29);

DV_QUANTITY
magnitude: Real
units: String

FIGURE 6 Standard ADL for Constraint on Quantity

reference

age matches {
QUANTITY matches {

property matches {“time”}
units matches {“years”}
magnitude matches {|0.0..200.0|}

}
QUANTITY matches {

property matches {“time”}
units matches {“months”}
magnitude matches {|3.0..12.0|}

}
}

model type

property matches “time”

if units is “years” then magnitude matches 0..200
units matches “years” or “months”

if units is “months” then magnitude matches 3..36
etc

desired
constraint

standard ADL
expression
using
alternates

value matches {
C_QUANTITY <

property = <"time">
list = <

items = <
[1] = <

units = <"yr">
magnitude = <|0.0..200.0|>

>
[2] = <

units = <"mth">
magnitude = <|1.0..36.0|>

>
>

>
>

}

FIGURE 7 Inclusion of a Constraint Object as Data
Editors:T Beale Page 21 of 25 Date of Issue: 5 Feb 2005

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Data_types.quantity Package The openEHR Archetype Profile
Rev 0.5
• the dADL instance must obey the semantics of the custom type of which it is an instance.

It should be understood of course, that just because a custom constraint type has been defined, it does
not need to be used to express constraints on the reference model type it targets. Indeed, any mixture
of standard ADL and dADL-expressed custom constraints may be used within the one archetype.

5.3.1 Constraining Units
This type is used to represent measured continuous variables, and consists of a magnitude, units and
property. Accuracy and precision can also be supplied if required. The following example shows a
constraint corresponding to a blood pressure, expressed using any pressure unit.

definition
QUANTITY matches {

magnitude matches {|0.0..500.0|}
units matches {[ac0001]}

}
ontology

...
items(“ac0001”) = <query(“units”, “unit matches ‘FORCE/DISTANCE^2’”)>

In the above, the expression “FORCE/DISTANCE^2” is an instance of a code phrase from a terminology
called “units”; i.e. most likely a post-coordination from a units term engine.

5.3.2 C_DV_QUANTITY Class Definition

CLASS C_DV_QUANTITY

Purpose Constrain instances of DV_QUANTITY.

Inherit C_DOMAIN_TYPE

Attributes Signature Meaning

items:
List<C_DV_QUANTITY_ITEM>

List of value/units pairs.

property: DV_CODED_TEXT Optional constraint on units property

Invariants
Date of Issue: 5 Feb 2005 Page 22 of 25 Editors:T Beale

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Archetype Profile Data_types.quantity Package
Rev 0.5
5.3.3 C_DV_QUANTITY_ITEM Class Definition

CLASS C_DV_QUANTITY_ITEM

Purpose Constrain instances of DV_QUANTITY.

Inherit C_DOMAIN_TYPE

Attributes Signature Meaning

value: Interval<Real> Value must be inside the supplied interval.

units: C_STRING Constraint on units

Invariants units_valid: units /= Void and not units.is_empty
Editors:T Beale Page 23 of 25 Date of Issue: 5 Feb 2005

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Data_types.quantity Package The openEHR Archetype Profile
Rev 0.5
Date of Issue: 5 Feb 2005 Page 24 of 25 Editors:T Beale

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Archetype Profile
Rev 0.5

Editors:T Beale Page 25 of 25 Date of Issue: 5 Feb 2005

© 2005 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

END OF DOCUMENT

	ARCHETYPE MODEL
	The openEHR Archetype Profile
	Copyright Notice
	Amendment Record
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Purpose
	1.2 Related Documents
	1.3 Status
	1.4 Peer review

	2 Overview
	2.1 Design Background
	2.2 Package Structure

	3 Data_types.basic Package
	3.1 Class Descriptions
	3.1.1 C_DV_STATE Class
	3.1.2 STATE_MACHINE Class
	3.1.3 STATE Class
	3.1.4 TRANSITION Class

	4 Data_types.text Package
	4.1 Overview
	4.2 Requirements
	4.3 Design
	4.3.1 Standard ADL Approach
	4.3.2 Terminology-specific Code Constraints
	4.3.3 Terminology-neutral Code Constraints

	4.4 Pre-evaluation
	4.5 Class Descriptions
	4.5.1 C_DV_CODED_TEXT Class

	5 Data_types.quantity Package
	5.1 Overview
	5.2 Ordinal Type Constraint
	5.2.1 C_DV_ORDINAL Class Definition

	5.3 Quantity Type Constraint
	5.3.1 Constraining Units
	5.3.2 C_DV_QUANTITY Class Definition
	5.3.3 C_DV_QUANTITY_ITEM Class Definition

