
Release 1
The openEHR Modelling Guide

Keywords: UML, object-orientation, modelling

Editors: T Bealea

a. Ocean Informatics

Revision: 1.3.2 Pages: Date of issue: 12 Mar 2007
© 2002-2007 The openEHR Foundation

The openEHR Foundation is an independent, non-profit community, facilitating the sharing of
health records by consumers and clinicians via open-source, standards-based implementations.

Founding
Chairman

David Ingram, Professor of Health Informatics,
CHIME, University College London

Founding
Members

Dr P Schloeffel, Dr S Heard, Dr D Kalra, D Lloyd, T Beale

email: info@openEHR.org web: http://www.openEHR.org

http://www.openEHR.org

The openEHR Modelling Guide
Rev 1.3.2
Amendment Record

Acknowledgements
The work reported in this paper has been funded in part by the Cooperative Research Centres Pro-
gram through the Department of the Prime Minister and Cabinet of the Commonwealth Government
of Australia, by Ocean Informatics, Australia, and by the CHIME department, University College
London.

Issue Details Who Completed

R E L E A S E 1.0.1

1.3.2 Minor modifications and updates to tooling description. T Beale 12 Mar 2007

1.3.1 Added inheritance diagram section. T Beale 08 Mar 2006

R E L E A S E 1.0

1.3 Added class colour scheme. T Beale 24 Dec 2005

R E L E A S E 0.95

1.2.1 Added section on functions and anchored types. T Beale 24 Feb 2005

1.2 Added section on tooling. T Beale 14 Feb 2005

R E L E A S E 0.9

1.1.1 CR-000041. Visually differentiate primitive types in openEHR
documents.
CR-000013. Rename key classes, according to CEN ENV
13606.
Add explanation of qualified associations, existence, cardinal-
ity.

D Lloyd,
D Kalra,
T Beale

04 Oct 2003

1.1 Kestral Australia review. G Grieve 08 Mar 2003

1.0 Adapted from openEHR EHR Reference Model document T Beale 10 May 2002
Date of Issue:12 Mar 2007 Page 2 of 19 Author: T Beale

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Modelling Guide Introduction
Rev 1.3.2
1 Introduction

1.1 Purpose
This document describes modelling method and tools of openEHR. It explains the usage of UML,
how to read the openEHR specifications. The intended audience includes:

• Software development organisations using openEHR.

1.2 Overview
The openEHR Foundation provides specifications of health information systems and interoperability
mechanisms in the form of formal, object-oriented models. These models are expressed in the OMG
Unified Modelling Language (UML), along with detailed tabular descriptions. A formal textual
expression is used to verify all models, ensuring that openEHR specifications are more than just
paper. At the coarsest scale, the models are designed according to the ISO reference model for open
distributed processing (RM/ODP). The openEHR models are divided into the Reference Model
(RM), containing the information viewpoint, the Service Model (SM), containing the computational
viewpoint, and the Archetype Model (AM), containing the formalisms for domain models, known as
archetypes.

The models are a suitable starting point for system and interoperability software. Expressions in vari-
ous implementation technologies are supplied by openEHR, known as Implementation Technology
Specifications (ITSs). These are generated from the formal textual primary expression of the models.
Author: T Beale Page 3 of 19 Date of Issue:12 Mar 2007

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Modelling Environment The openEHR Modelling Guide
Rev 1.3.2
2 The openEHR Modelling Environment
Since the primary users of the formal specifications in health information standards are software
developers and information systems builders, it is crucial that the models presented are comprehensi-
ble and implementable by technical people. To ensure comprehensibility, the OMG standard UML
2.0 diagramming language has been used for graphical models. Detailed formal specifications of all
classes are given, including class invariants and function pre- and post-conditions.

In order to ensure implementability, a tool-based environment is used for representation and manipu-
lation of the models. The general approach is to have a single, authoratative “source” for any given
artifact, and to use purpose-built converters to generate usable “views” of the source. The main way
this is applied is that the core information and service model specifications (IMs and SMs) of the Ref-
erence Model are fully defined in an object-oriented formalism, with implementation technology
specifications (ITSs) being generated as views. For example, the XML-schema, Java interface
classes, C# interface classes, and other computable views for the EHR can be generated from the pri-
mary EHR model, which is expressed in formal textual UML 2.0-compliant semantics.

The primary expression of all object-oriented openEHR models is currently the ECMA-standardised
Eiffel language (ECMA Eiffel page), as this the only textual formalism that closely approximates
UML 2.0, and has tools available for it (GPL version available, see http://www.eiffel.com). The
use of the Eiffel tools permit the core models to include all possible object-oriented semantics, includ-
ing classes, attributes, functions, procedures, pre- and post-conditions, class invariants, multiple
inheritance, genericity (“template” classes), agents (“delegates”), within a fully object-oriented type
system (i.e. even basic types such as integer are instances of classes). Invariants are probably the sin-
gle most important element of class specifications in any object model, since they indicate to the
developer the valid instance structures in a system (for example, if a list attribute must be present, and
if it is, whether the list can be empty and so on). All of these semantics can be validated, ensuring that
the published specifications are much more than “just paper”, as is unfortunately common with many
well-known published standards.

FIGURE 1 openEHR modelling environment

ECMA XMI

Model verification environment

export

XSD
export

Java
export

WSDL
export

etc

Published
document

form

Eiffel

Compiler
Eiffel

source

UML
2.0

W3C
.xsd

java

WSDL

ITSs

C#
export

C#.Net

UML Tool Environment

Publishing environment
Date of Issue:12 Mar 2007 Page 4 of 19 Author: T Beale

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.ecma-international.org/memento/TC39-TG4.htm
http://www.eiffel.com

The openEHR Modelling Guide The openEHR Modelling Environment
Rev 1.3.2
The primary models are used as the source for the published documentary form of the specifications,
generally in Adobe PDF format. There is not considered to be any semantic difference between tool-
based abstract model expressions and their documentary counterparts, i.e. there is no “mapping” or
“conversion”.

The primary models are also losslessly translated to a UML-2.0 compliant XML instance form, from
which all other views are generated. In theory, this intermediate form should be OMG XMI, but for
various practical reasons it is not: not only are XMI documents massive and impossible for humans to
read, but they do not correctly include pre- and post-conditions or invariants. However, the choice of
the intermediate format may change in the future - the only requirements are that it be lossless with
respect to the primary specifications, and that it be acceptable and processable by its users.
Author: T Beale Page 5 of 19 Date of Issue:12 Mar 2007

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Formalisms The openEHR Modelling Guide
Rev 1.3.2
3 Formalisms

3.1 UML
The openEHR models are shown in UML (Unified Modelling Language) [5] and have been formally
validated using the Eiffel language, which (strangely) is still one of the only reliable tools for specify-
ing and fully validating object-oriented models. UML is an industry-standard modelling language,
which has been formally defined by the OMG. The openEHR models make heavy use of two power-
ful UML semantics, namely:

• Generic classes (‘template classes’ in C++)
• Contracts, i.e. pre-conditions, post-conditions, invariants (defined in the OMG Object Con-

straint Language, OCL)
The notation used in this document follows the UML version 2.0 (see [5]). The following sections
describe the major semantic constructs in the class diagrams in this document. Refer to Meyer [8] for
a definitive guide to object-oriented semantics.

3.1.1 Package
A collection of related classes, typically corresponding to one or more business objects, and grouped
for convenient management of development. Packages may be nested hierarchically. Indicated graph-
ically by a named blue rectangle containing classes.

3.1.2 Class
The primary construct in object-oriented modelling and software development. A class defines
objects in terms of behaviour and state, or in more technical terms, routines and attributes. The class
definition is the template for creating objects at runtime, which are instances of the class.

3.1.3 Inheritance
Inheritance is a relationship between classes in which the definition of the descendant (inheriting
class) is based on the ancestor. The descendant may change the ancestor’s definition in certain ways,
according to the rules of the formalism. Inheritance is not normally visible at runtime as a relationship
between objects. A number of meanings can be assigned to inheritance relationships, including:

• Specialisation/generalisation
• Implementation re-use
• Facility inheritance (mixin classes)
• Taxonomic classification

3.1.4 Association
Association is a relationship between classes which describes a runtime relationship between objects.
Its cardinality may be single (1:1) or multiple (1:N).

A particular kind of association between classes indicates the logical part-of relationship. There are
two recognised variants of this, namely composition, or containment-by-value, and aggregation
meaning a logical part-of relationship. The use of these different types of association in the model is
detailed below.
Date of Issue:12 Mar 2007 Page 6 of 19 Author: T Beale

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Modelling Guide Formalisms
Rev 1.3.2
3.2 Other Alternatives
Numerous alternatives were considered both in the original GEHR project, and for openEHR, includ-
ing the following:

OMG IDL: the OMG’s IDL language lacks assertions and generic types, and its type model is
inconsistent (basic “types” are not the same as constructed types, due to the influence of C);

Rumbaugh/Booch/etc notations: none of these notations are formal, and all lack assertions. In
any case, they have been superseded by UML;

SGML/XML: SGML is overly complex, and very document-oriented.
XML-schema: not well adapted to information modelling (cf information representation)

because it is purely data-oriented, and missing a number of important semantics, namely
assertions, generic types and multiple inheritance.

Z, Object Z, B: these are worthy of future consideration. Their use now is prevented mainly by a
lack of industrial strength tools.
Author: T Beale Page 7 of 19 Date of Issue:12 Mar 2007

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Modelling Guide The openEHR Modelling Guide
Rev 1.3.2
4 Modelling Guide

4.1 General Principles
One crucial point to understand about modelling is that the semantics of all definitions in a model
constitute statements about the informational (or behavioural) entities defined by the relevant classes,
and no more. Many modellers make the mistake of entering into torturous discussions about the
semantics of real world objects based on the arrangement of classes or relationships in a model, when
in fact the argument should be the other way around - any model is a formalisation and abstraction,
potentially of real world entities, and its meaning does not extend beyond itself. Thus, any concept in
a model, such as defined by the type QUANTITY should not be understood as being a description of
quantities in the real world, but a formal, abstract model of a concept called “quantity” as agreed by
the modellers.

4.2 Naming
Class names are in upper case, with underscore separators, enabling them to be easily identified and
read. In almost all cases, the full english word has been used. Class feature names (i.e. attribute and
method names) are in lower case, underscore separated.

This style choice may surprise some developers, and has been done in purpose for a number of rea-
sons:

• for better readability;
• to make it clear that the specification is an abstract one, and to prevent confusion with pro-

gramming languages ITSs;
• to allow the use of mixed case class names for the assumed types of UML, such as String,

Integer, List<T> and so on; these contrast with classes defined by openEHR, such as
SECTION and ENTRY, making it very clear what openEHR has defined versus what it has
assumed.

The names used in the abstract specifications are transformed by tools into the preferred idiom of
each target formalism; the rules for doing so are described in each ITS.

All names have been chosen with implementors and other people in mind who will deal with techni-
cal modelling, rather than users. In almost all cases, users will never see the names used in the refer-
ence or archetype models. The exception is archetype editor tools which would normally show the
class names of instances of the archetype model which are being created; it is assumed that users of
this tool will have a basic technical understanding of the reference and archetype models.

4.3 Operators
Three classes of operator are used:

• infix operators, i.e. any binary operator which appears between the operands, e.g. “+” in the
expression “X + Y”

• prefix operators, i.e. any unary operator appearing before the operand, e.g. “-” in “-5”
• postfix operators, i.e. any unary operatory appearing after the operand, e.g. “!” in “x!” (fac-

torial).
Date of Issue:12 Mar 2007 Page 8 of 19 Author: T Beale

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Modelling Guide Modelling Guide
Rev 1.3.2
4.4 Types
The reference model can be thought of as consisting of a number of classes which fulfill one of two
purposes. The first category includes those which represent concretely-modelled concepts like “revi-
sion history entry” or “transaction”, while the second includes those whose job it is to represent
generic data structures, used to express clinical data whose specific form is defined by archetypes,
rather than by the reference model. The general form of the latter can best be understood as structures
of name/value pairs, where all nodes in the structure have names, and leaf nodes have values as well.
There are accordingly two kinds of “datatypes” used in the model: one for the attributes of all classes,
and the other for the values in the clinical name/value structures. These latter are known as “data
value types”, whereas the former are known as “attribute types”. Instances of data value types are the
only allowable values in the generic information structures.

In addition to types defined in the model, a number of basic types are assumed in the modelling for-
malism, which are globally understood in the same (or compatible) ways in all implementation for-
malisms. These are:

- Character (members of a character set)
- String (strings of printable characters)
- Integer (integer numbers)
- Real (real numbers)
- Double (double precision floating point real numbers)
- Boolean (two-valued entities)
- Array<T> (physical container of items indexed by number)
- List<T> (implied order, non-unique membership)
- Set<T> (no order, unique membership)

4.4.1 Data Value Types
Data value types are characterised by being explicitly modelled and inheriting from the abstract class
DATA_VALUE. The names of all of these types are prefixed with “DV_” to differentiate them from
types of the same names which may occur in particular implementation technologies, thus DV_DATE
rather than DATE and so on. Types which are notionally one of the standard basic types have a specific
model. For example, the notional “string” type is modelled as the data value type DV_PLAIN_TEXT.

Data value types are the only types which can be used as data values, e.g. as the type of the ELE-
MENT.value attribute in the openEHR EHR reference model, or other similar places where the type
DATA_VALUE is specified.

CLUSTER

ITEM
displayed: Boolean

representation
1

FIGURE 2 rm.data_structures.representation Package

ELEMENT
interpretation[1]:
TERM_REFERENCE

items
1..*

representation

DATA_VALUE
value

1

STRUCTURE
Author: T Beale Page 9 of 19 Date of Issue:12 Mar 2007

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Modelling Guide The openEHR Modelling Guide
Rev 1.3.2
4.4.2 Attribute Types
Types which can be used for other attributes in model classes include any standard basic type, or any
of the data value types. For example, if a string is needed, the class STRING may be used, unless spe-
cial features of DV_PLAIN_TEXT are required. If a date/time is needed however, since there is no
guaranteed standard type for this, the data value type DV_DATE_TIME must be used.

4.4.3 Existence and Cardinality
Existence of attributes is indicated by brackets after the attribute name inside a class box. Possible
values are: [0..1], [1], meaning optional and mandatory, respectively. For attributes of container
types such as List<T>, existence of the whole container is shown the same way. Cardinality of the
container is shown by including the container type explicitly.

4.5 Inheritance
The inheritance relationship between classes indicates that one class is the descandant of another,
termed the ancestor. Two kinds of inheritance are used in the openEHR models, both readily available
in all object-oriented formalisms. These are standard specialisation or “is-a” inheritance, implying
type substitutability, and facility inheritance, whereby the descendant class is simply using the facili-
ties of the inherited class. To make clear the distinction in the UML diagrams, specialisation inherit-
ance is indicated using unbroken grey lines, while facility inheritance is indicated using dotted lines,
as shown in the following example.

4.6 Relationships
Relationships between classes in the reference model are of three logical types, described below.

4.6.1 Composition
Composition indicates the part/sub-part relationship where the sub-part can have no meaningful exist-
ence outside of the whole, or, put another way, the lifetime of the part is controlled by the whole. For
example, in the openEHR EHR RM, the class COMPOSITION has as a subpart ACCESS_CONTROL,

PERSON
name [1]: String
address [0..1]: List<String>

FIGURE 3 Attribute Existence and Cardinality

FIGURE 4 rm.data_types.quantity.date_time Package

DV_DURATIONDV_DATE DV_TIME

TIME_CONSTANTSDV_ABSOLUTE_QUANTITY

DV_DATE_TIME

DV_AMOUNT
Date of Issue:12 Mar 2007 Page 10 of 19 Author: T Beale

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Modelling Guide Modelling Guide
Rev 1.3.2
illustrated in FIGURE 5. All objects contained within a single “business object”, i.e. Strings,
Integers and other leaf types are always related to the containing object by composition.

In UML, composition is indicated by a black diamond on the class representing the whole. A “part”
object can only be in a composition relationship with one “whole” object, i.e. a given instance cannot
be part-of multiple wholes.

Semantically, composition corresponds to physical containment by value. Movement or deletion of
the whole causes movement or deletion respectively of the part.

4.6.2 Aggregation
Aggregation indicates a logical part/sub-part relationship, where the sub-part can meaningfully exist
on its own, i.e. does not need to be deleted if the parent whole is deleted. Consider by way of example
the relationship between HEALTH_CARE_FACILITY and HEALTH_CARE_PROFESSIONAL illustrated
in FIGURE 6. The difference in semantics with respect to composition is that aggregation parts and
wholes represent business objects (e.g. HOSPITAL and PERSON), whereas the part objects of compos-
ite relationships represent fine-grained constituents inside a business object (e.g. PERSON and
PERSON_NAME).

In UML, aggregation is indicated by a white diamond on the class representing the whole and a key
shown on the part, meaning that the whole class contains a key referring to the part class. Movement
or deletion of the whole may occur without movement or deletion of the part.

A sensible definition of the semantics of aggregation has historically been, and remains, problematic
for many modellers. Various books on UML including “UML Distilled” [5], and indeed the authors of
UML themselves have noted the confusion1, and done little to clear it up. Consequently, in some pub-
lications, the aggregation relationship has the semantics of allowing a “part” to be a part-of more than
one whole. We see this as an error for a number of reasons.

1. Jim Rumbaugh says of aggregation “think of it as a modelling placebo” (Rumbaugh, Jacobsen
and Booch 1999) [3]. Martin Fowler calls it “one of my biggest betes noires”. Clearly, aggrega-
tion is not well understood by the “experts” [5].

FIGURE 5 Examples of Composition

COMPOSITION

ACCESS_CONTROL

CODED_TERM
rubric: String
concept_code: String

FIGURE 6 Example of Aggregation

HEALTH_CARE_FACILITY

HEALTH_CARE_PROFESSIONAL
Author: T Beale Page 11 of 19 Date of Issue:12 Mar 2007

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Modelling Guide The openEHR Modelling Guide
Rev 1.3.2
• Firstly, there is no sensible understanding in natural language for the concept of something
that is part of more than one whole.

• When the semantics of changing the part are investigated, it is normally found that a change
to the part, seen as part-of one whole is not expected to cause a change in the same part seen
as part-of another whole. If the change should indeed occur in all wholes, then the
whole/part relationships are associations, and do not represent the part-of relationship at all.
If changes are not meant to be global to all wholes, then distinct (possibly initially identical)
instances of the part must be part-of each whole.

• In some models, aggregation is used in an attempt to represent “re-use”. However, re-use is
not a meaningful modelling concept, although it is a meaningful implementation concept1.
The only reasonable modelling interpretation of “re-use” would be that a part is part-of one
whole, and there are other similar wholes that have (or will have at a later point in time) a
part which is identical to the existing part. In this case, the proper interpretation of aggrega-
tion is that each whole has a part, and that there are also constraints or operations (such as
copy) which guarantee that the parts of certain wholes are all identical in value to each other.

Consequently, in this document aggregation semantics are defined such that a “part” object can only
be in a aggregation relationship with one “whole” object, i.e. a given instance cannot be part-of multi-
ple wholes.

4.6.3 Association
Association indicates any other kind of relationship in which instances of both classes are completely
meaningful in themselves. Indicated by no diamond in UML.

4.6.4 Qualified Association
One kind of association which occurs quite commonly is the “qualified association”. In contrast with
normal associations which are “direct” (i.e. object to object), qualified associations are by symbolic
reference, where the reference is in the form of an attribute value from the target class. FIGURE 7
illutrates the qualified asscociation, and shows an equivalent single class below it. The qualified asso-
ciation is most commonly used when objects of the target class will each have a unique id which can
be referenced from elsewhere, in the manner of a primary/foreign key in relational systems (here the
foreign key is the attribute bar_id: String in the class Foo.

1. This is well known as the “flyweight” pattern described in [6]. In the UML diagram for this
pattern, an aggregation relationship appears between a flyweight-factory and the flyweight
(shared) object; associations appear between the logical “owners” and the factory-generated fly-
weights)

FIGURE 7 Qualified Association

FOO BAR
id: String
etc: Etc

id

FOO
bar_id: String

bar_id
Date of Issue:12 Mar 2007 Page 12 of 19 Author: T Beale

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Modelling Guide Modelling Guide
Rev 1.3.2
4.7 Functions
Functions are understood in openEHR in the object-oriented sense as “computed features having a
return type, and not causing side-effects in the object on which they are called”. Functions are used in
various places to define relevant interface, to support the expression of invariants, or to express com-
putation of derived properties, such as extracting the logical pieces from a URI string.

4.8 Anchored Types
An object-oriented feature used sometimes in the openEHR specifications is that of “anchored types”.
An example of such a type is shown in the following UML.

In this figure, an infix function ‘<‘ is defined on the abstract type ORDERED. The signature has the
parameter other, of type “like Current”. This syntax has been adopted from the Eiffel language
because it is so useful in specification. Its effect is to say that in every subtype of ORDERED there is a
function ‘<‘ whose other argument is of the same type as the subtype - with no actual repeated defini-
tions required to do this. This clearly saves on code, reduces errors of repetition. Although it is not
available in UML, or in many languages, it is used in the specifications to reduce the repetition, and
improve clarity. Mapping to implementation formalisms is easy: simply define the initial signature as
having the same type as the type on which it is defined (ORDERED in this above example), and rede-
fine the signature appropriately down the inheritance tree.

4.9 Constraints and Contracts
Constraints are written in a order predicate logic based on the OMG’s Object Constraint Language
(OCL), with some differences due to problems in the current definition of OCL.

The keywords used are:

• require: routine precondition
• ensure: routine postcondition
• invariant: class invariant
• and, or, and then, or else, implies, xor: Boolean operators

The various kinds of constraints together form the “contract” of a class, that is the conditions under
which its instances interact with instances of other classes (including itself). The following sections
describe the three constraint types. See Meyer [8] and Kilov [7] for an explanation of contracts.

ORDINAL

ORDERED

infix ‘<’ (other: like Current): Boolean

QUANTITY

FIGURE 8 pseudo-UML for Anchored Types
Author: T Beale Page 13 of 19 Date of Issue:12 Mar 2007

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Modelling Guide The openEHR Modelling Guide
Rev 1.3.2
4.9.1 Pre-conditions
Pre-conditions are introduced with the keyword require, and consist of a first-order predicate logic
expression evaluating to True or False. A precondition represents the truth condition which must be
upheld by the caller of a routine to ensure the correct functioning of the routine, i.e. it is a condition
assumed to be true by the routine. If a pre-condition is violated, the caller is in the wrong.

4.9.2 Post-conditions
Post-conditions are introduced with the keyword ensure, and consist of a first-order predicate logic
expression evaluating to True or False. A post-condition represents the truth condition which must be
upheld by a routine, i.e. it is a condition guaranteed to be true by the routine to the caller. If a post-
condition is violated, the called routine is in the wrong.

4.9.3 Invariants
Invariants consist of first order predicate logic statements which apply to the whole class. The mean-
ing is that for every instance of the class, the condition is true at all times, apart from mid-execution
of a routine. In other words, object invariants are always true at the points in time when they are
accessible to other objects - including prior to calling a routine, and upon exit. If an invariant fails,
there is an error in the design of the class. Invariants must be satisfied upon completion of any crea-
tion routine.

4.10 Special Types
The type Any is assumed as the parent type of all other types, and is the type on which basic operators
of equality and assignment are defined. See the Support Reference Model for details.

4.11 Special Instances
The following special instances are indentified in constraints.

• Result - the result of any function. “Result” is treated like a normal variable whose type is
the return type of the function;

• Current - the current object. Synonymous with “self” in some languages.
• Void - the empty pseudo-object; conforms to any type. Means the absence of an instance.

Synonymous with “null” in many languages.
Date of Issue:12 Mar 2007 Page 14 of 19 Author: T Beale

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Modelling Guide Class Descriptions
Rev 1.3.2
5 Class Descriptions
Classes in the openEHR models are formally described in tabular form. Three colour schemes are
used, as follows:

Cyan: reference model classes
Light green: archetype model classes

Reference model classes are defined in the form shown below. The various meanings of each section
are indicated in this example table.

CLASS CLASS_NAME

Purpose Description of purpose of class in model and information based on it.

Use Particular uses of class in the model, or instances of the class in data.

MisUse Potential expected misuses of the class, usually based on common misuses or mis-
conceptions of the name of the class.

CEN
Correspondence to CEN ENV 13606 part 1 - part 4 concepts. These standards
were published by CEN in 2000, and can be found on
http://www.centc251.org.

Synapses
Correspondence to concepts in the Synapses, SynEx and EHCR-support Action
models, produced in various EC-funded (4th framework) post-original GEHR
projects. Some of this work is available at http://www.chime.ucl.ac.uk.

GeHR
Correspondence to Australian GEHR models as originally published on
http://www.gehr.org (now defunct); see specifications at
http://www.openehr.org/gehr_australia/t_aus_gehr.htm.

HL7v3 Correspondence to concepts in HL7 version 3 models, as published in various bal-
lots at http://www.hl7.org.

Attributes Signature Meaning

0..1 attr_1: SOME_TYPE Description of this attribute

1..1 attr_n: SOME_TYPE Description of this attribute

Functions Signature Meaning

func_1(some_args: SOME_TYPE):
SOME_TYPE
require precondition
ensure postcondition

Description of this function

func_n(some_args: SOME_TYPE):
SOME_TYPE

Description of this function
Author: T Beale Page 15 of 19 Date of Issue:12 Mar 2007

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.openehr.org/gehr_australia/t_aus_gehr.htm
http://www.gehr.org
http://www.hl7.org
http://www.centc251.org
http://www.chime.ucl.ac.uk

Class Descriptions The openEHR Modelling Guide
Rev 1.3.2
Preconditions and postconditions of functions are optional; all preconditions, postconditions and
invariants are written in the first-order predicate logic used in the Eiffel language [8], [9] (mainly
because this is compilable and testable in any Eiffel tool, including the Gnu SmallEiffel com-
piler).

Archetype classes are defined using tables like the following.

Invariants

Class invariants. Each mandatory attribute must have an invariant of the form:
Attr_1_exists: attr /= Void
Other invariants may be stated. All invariants have to be true before and after calls
to routines (procedures or functions) made from outside an object.

CLASS Archetype CLASS_XXX

Purpose xxxx

Attributes Signature Meaning

1..1 aaa: T xxx

Functions Signature Meaning

fff: T xx

Invariant Aaa_valid: aaa /= Void

CLASS CLASS_NAME
Date of Issue:12 Mar 2007 Page 16 of 19 Author: T Beale

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.loria.fr/projets/SmallEiffel/
http://www.loria.fr/projets/SmallEiffel/

The openEHR Modelling Guide References
Rev 1.3.2
A References
1 Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems.

See http://www.deepthought.com.au/it/archetypes.html.

2 Beale T et al. Design Principles for the EHR. See http://www.deepthought.com.au/openEHR.

3 Booch G, Rumbaugh J, Jacobsen I. The Unified Modelling Language User Guide. Addison es-
ley 1999.

4 Fowler M. Analysis Patterns: Reusable Object Models
Addison Wesley 1997

5 Fowler M, Scott K. UML Distilled (2nd Ed.)
Addison Wesley Longman 2000

6 Gamma E, Helm R, Johnson R, Vlissides J. Design patterns of Reusable Object-oriented Soft-
ware. Addison-Wesley 1995

7 Kilov H, Ross J. Information Modelling. Prentice Hall 1994.

8 Meyer B. Object-oriented Software Construction, 2nd Ed. Prentice Hall 1997

9 Walden K, Nerson J. Seamless Object-oriented Software Architecture. Prentice Hall 1994
Author: T Beale Page 17 of 19 Date of Issue:12 Mar 2007

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.deepthought.com.au/it/archetypes.html
http://www.deepthought.com.au/it/archetypes.html

References The openEHR Modelling Guide
Rev 1.3.2
Date of Issue:12 Mar 2007 Page 18 of 19 Author: T Beale

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Modelling Guide
Rev 1.3.2

Author: T Beale Page 19 of 19 Date of Issue:12 Mar 2007

© 2002-2007 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

END OF DOCUMENT

	Amendment Record
	Acknowledgements
	1 Introduction
	1.1 Purpose
	1.2 Overview

	2 The openEHR Modelling Environment
	3 Formalisms
	3.1 UML
	3.1.1 Package
	3.1.2 Class
	3.1.3 Inheritance
	3.1.4 Association

	3.2 Other Alternatives

	4 Modelling Guide
	4.1 General Principles
	4.2 Naming
	4.3 Operators
	4.4 Types
	4.4.1 Data Value Types
	4.4.2 Attribute Types
	4.4.3 Existence and Cardinality

	4.5 Inheritance
	4.6 Relationships
	4.6.1 Composition
	4.6.2 Aggregation
	4.6.3 Association
	4.6.4 Qualified Association

	4.7 Functions
	4.8 Anchored Types
	4.9 Constraints and Contracts
	4.9.1 Pre-conditions
	4.9.2 Post-conditions
	4.9.3 Invariants

	4.10 Special Types
	4.11 Special Instances

	5 Class Descriptions
	A References

