
Release 1 .0 .1
The openEHR Reference Model

Common Information Model

Keywords: common, EHR, reference model, openehr

Editors: {T Beale, S Heard}a, {D Kalra, D Lloyd}b

a. Ocean Informatics
b. Centre for Health Informatics and Multi-professional Education,
University College London

Revision: 2.1.0 Pages: 91 Date of issue: 08 Apr 2007

Data Structures

Data Types

DemographicEHR

Security

EHR Extract

Archetype OM

Support

Common

Integration

Composition openEHR Archetype Profile

Template OM

ADL
© 2003-2007 The openEHR Foundation.

The openEHR Foundation is an independent, non-profit community, facilitating the sharing of
health records by consumers and clinicians via open-source, standards-based implementations.

Founding
Chairman

David Ingram, Professor of Health Informatics,
CHIME, University College London

Founding
Members

Dr P Schloeffel, Dr S Heard, Dr D Kalra, D Lloyd, T Beale

email: info@openEHR.org web: http://www.openEHR.org

http://www.openEHR.org

Common Information Model
Rev 2.1.0
Copyright Notice

© Copyright openEHR Foundation 2001 - 2007
All Rights Reserved

1. This document is protected by copyright and/or database right throughout the
world and is owned by the openEHR Foundation.

2. You may read and print the document for private, non-commercial use.
3. You may use this document (in whole or in part) for the purposes of making

presentations and education, so long as such purposes are non-commercial and
are designed to comment on, further the goals of, or inform third parties
about, openEHR.

4. You must not alter, modify, add to or delete anything from the document you
use (except as is permitted in paragraphs 2 and 3 above).

5. You shall, in any use of this document, include an acknowledgement in the form:
"© Copyright openEHR Foundation 2001-2007. All rights reserved. www.openEHR.org"

6. This document is being provided as a service to the academic community and on
a non-commercial basis. Accordingly, to the fullest extent permitted under
applicable law, the openEHR Foundation accepts no liability and offers no
warranties in relation to the materials and documentation and their content.

7. If you wish to commercialise, license, sell, distribute, use or otherwise copy
the materials and documents on this site other than as provided for in
paragraphs 1 to 6 above, you must comply with the terms and conditions of the
openEHR Free Commercial Use Licence, or enter into a separate written agreement
with openEHR Foundation covering such activities. The terms and conditions of
the openEHR Free Commercial Use Licence can be found at
http://www.openehr.org/free_commercial_use.htm
Date of Issue: 08 Apr 2007 Page 2 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model
Rev 2.1.0
Amendment Record

Issue Details Raiser Completed

R E L E A S E 1.0.1

2.1.0 CR-000209: Minor changes to correctly define
AUTHORED_RESOURCE.current_revision. Functions added to
REVISION_HISTORY; AUTHORED_RESOURCE.current_revision
postcondition added.
CR-000206: Change LOCATABLE.item_at_path to return ANY
CR-000200: Correct Release 1.0 typographical errors. Add
missed invariant in VERSION to restrict contribution.type to
“CONTRIBUTION”. Fix pre- and post-conditions in LOCATA-
BLE functions.
Fix errors in timezone max/min values and invariants.
CR-000203: Release 1.0 explanatory text improvements. Move
Explanatory material on configuration management and ver-
sioning to Architecture Overview.
CR-000202: Correct minor errors in VER-
SION.preceding_version_id. Rename preceding_version_id to
preceding_version_uid. Add preceding_version_uid invariant
to VERSION<T>.
CR-000197: Change LOCATABLE.uid to HIER_OBJECT_ID
CR-000214: Changes to VERSION preparatory to EHR Extract
upgrade. Added lifecycle_state to VERSION<T>, extra functions
on VERSIONED_OBJECT<T>. Corrected and added commit func-
tions to VERSIONED_OBJECT. Added ATTESTA-
TION.attested_view (conforms to CEN EN13606-1).
CR-000212: Allow VERSION.data to be optional to enable logi-
cal deletion.
CR-000130: Correct security details in LOCATABLE and ARCHE-
TYPED classes. Remove ARCHETYPED.access_control.
CR-000219: Use constants instead of literals to refer to termi-
nology in RM.
CR-000231: Change RESOURCE_DESCRIPTION.details from
List to Hash.
CR-000235: Make attestation-only commit require a Contribu-
tion.
CR-000239: Add common parent type of OBJECT_VERSION_ID
and HIER_OBJECT_ID.
CR-000243: Add template_id to ARCHETYPED class.
CR-000244: Separate LOCATABLE path functions into PATHA-
BLE class.
CR-000166: Add viewable form of document to COMPOSITION
CR-000246: Correct openEHR terminology rubrics.

Y S Lim

H Frankel
T Beale

T Cook
T Beale

E Sundvall

T Beale

H Frankel
H Frankel
S Heard
T Beale

T Beale

T Beale

R Chen

R Chen

A Patterson

H Frankel

T Beale
T Beale

H Frankel
S Heard

B Verhees
M Forss

08 Apr 2007

R E L E A S E 1.0
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 3 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Common Information Model
Rev 2.1.0
2.0 CR-000147: Make DIRECTORY re-usable. Add new directory
package.
CR-000162. Allow party identifiers when no demographic
data.
CR-000167. Add AUTHORED_RESOURCE class.
CR-000179. Move AUDIT_DETAILS to generic package; add
REVISION_HISTORY.
CR-000182: Rationalise VERSION.lifecycle_state and ATTESTA-
TION.status
CR-000065. Add Revision History to change control package.
CR-000187: Correct modelling errors in DIRECTORY class and
rename.
CR-000163: Add identifiers to FEEDER_AUDIT for originating
and gateway systems.
CR-000165. Clarify use of system_id in FEEDER_AUDIT and
AUDIT_DETAILS.
CR-000190. Rename VERSION_REPOSITORY to
VERSIONED_OBJECT .
CR-000161. Support distributed versioning. Additions to
change_control package. Rename REVISION_HISTORY_ITEM.revi-
sion to version_id, and change type to OBJECT_VERSION_ID.

R Chen

S Heard
H Frankel
T Beale
T Beale

C Ma
D Kalra
T Beale
T Beale

H Frankel

H Frankel

T Beale

H Frankel,
T Beale

02 Feb 2006

R E L E A S E 0.96

1.6.2 CR-000159. Improve explanation of use of ATTESTATION in
change_control package.

T Beale 10 Jun 2005

R E L E A S E 0.95

1.6.1 CR-000048. Pre-release review of documents. Fixed UML in
Fig 8 informal model of version control.

D Lloyd 22 Feb 2005

1.6 CR-000108. Minor changes to change_control package.
CR-000024. Revert meaning to STRING and rename as
archetype_node_id.
CR-000097. Correct errors in version diagrams in Common
model.
CR-000099. PARTICIPATION.function type in diagram not in
sync with spec.
CR-000116. Add PARTICIPATION.function vocabulary and
invariant.
CR-000118. Make package names lower case.
Improve presentation of identification section; move some text
to data types IM document, basic package.
CR-000111. Move Identification Package to Support

T Beale
S Heard
T Beale

Ken Thompson

R Shackel
(DSTC)
T Beale

T Beale

DSTC

10 Dec 2004

R E L E A S E 0.9

Issue Details Raiser Completed
Date of Issue: 08 Apr 2007 Page 4 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model
Rev 2.1.0
1.5 CR-000080. Remove ARCHETYPED.concept - not needed in
data
CR-000081. LINK should be unidirectional.
CR-000083. RELATED_PARTY.party should be optional.
CR-000085. LOCATABLE.synthesised not needed. Add vocabu-
lary for FEEDER_AUDIT.change_type.
CR-000086. LOCATABLE.presentation not needed.
CR-000091. Correct anomalies in use of CODE_PHRASE and
DV_CODED_TEXT. Changed PARTICIPATION.mode, changed
ATTESTATION.status, RELATED_PARTY.relationship,
VERSION_AUDIT.change_type, FEEDER_AUDIT.change_type to
to DV_CODED_TEXT.
CR-000094. Add lifecycle state attribute to VERSION; correct
DV_STATE.
Formally validated using ISE Eiffel 5.4.

DSTC

T Beale,
S Heard

DSTC

09 Mar 2004

1.4.12 CR-000071. Allow version ids to be optional in
TERMINOLOGY_ID.
CR-000044. Add reverse ref from VERSION_REPOSITORY<T>
to owner object.
CR-000063. ATTESTATION should have a status attribute.
CR-000046. Rename COORDINATED_TERM and
DV_CODED_TEXT.definition.

T Beale

D Lloyd

D Kalra
T Beale

25 Feb 2004

1.4.11 CR-000056. References in COMMON.Version classes should be
OBJECT_REFs.

T Beale 02 Nov 2003

1.4.10 CR-000045. Remove VERSION_REPOSITORY.status D Lloyd,
T Beale

21 Oct 2003

1.4.9 CR-000025. Allow ATTESTATIONs to attest parts of COMPOSI-
TIONs. Change made due to CEN TC/251 joint WGM, Rome,
Feb 2003.
CR-000043. Move External package to Common RM and
rename to Identification (incorporates CR-000036 - Add
HIER_OBJECT_ID class, make OBJECT_ID class abstract.)

D Kalra,
D Lloyd,
T Beale

09 Oct 2003

1.4.8 CR-000041. Visually differentiate primitive types in openEHR
documents.

D Lloyd 04 Oct 2003

1.4.7 CR-000013. Rename key classes according to CEN
ENV13606.

S Heard, D
Kalra, T Beale

15 Sep 2003

1.4.6 CR-000012. Add presentation attribute to LOCATABLE.
CR-000027. Move feeder_audit to LOCATABLE to be compati-
ble with CEN 13606 revision. Add new class FEEDER_AUDIT.

D Kalra 20 Jun 2003

1.4.5 CR-000020. Move VERSION.charset to DV_TEXT, territory to
TRANSACTION. Remove VERSION.language.

A Goodchild 10 Jun 2003

1.4.4 CR-000007. Add RELATED_PARTY class to GENERIC package.
CR-000017. Renamed VERSION.parent_version_id to
preceding_version_id.

S Heard,
D Kalra

11 Apr 2003

Issue Details Raiser Completed
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 5 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Common Information Model
Rev 2.1.0
Acknowledgements
The work reported in this paper has been funded in by a number of organisations, including The Uni-
versity College, London; The Cooperative Research Centres Program through the Department of the

1.4.3 Major alterations due to CR-000003, CR-000004. ARCHE-
TYPED class no longer inherits from LOCATABLE, now related
by association. Redesign of Change Control package. Docu-
ment structure improved. (Formally validated)

T Beale,
Z Tun

18 Mar 2003

1.4.2 Moved External package to Support RM. Corrected CONTRIBU-
TION.description to DV_TEXT. Made PARTICIPATION.time
optional. (Formally validated).

T Beale 25 Feb 2003

1.4.1 Formally validated using ISE Eiffel 5.2. Corrected types of
VERSIONABLE.language, charset, territory. Added ARCHE-
TYPED.uid:OBJECT_ID. Renamed ARCHETYPE_ID.rm_source to
rm_originator, and rm_level to rm_concept; added
archetype_originator. Rewrote archetype id section. Changed
PARTICIPATION.mode to COORDINATED_TERM & fixed invari-
ant.

T Beale,
D Kalra

18 Feb 2003

1.4 Changes post CEN WG meeting Rome Feb 2003. Changed
ARCHETYPED.meaning from STRING to DV_TEXT. Added CON-
TRIBUTION.name invariant. Removed AUTHORED_VA and
ACQUIRED_VA audit types, moved feeder audit to the EHR RM.
VERSIONABLE.code_set renamed to charset. Fixed pre/post
condition of OBJECT_ID.context_id, added
OBJECT_ID.has_context_id. Changed TERMINOLOGY_ID string
syntax.

T Beale,
D Kalra,
D Lloyd

8 Feb 2003

1.3.5 Removed segment from archetype_id; corrected inconsisten-
cies in diagrams and class texts.

Z Tun,
T Beale

3 Jan 2003

1.3.4 Removed inheritance from VERSIONABLE to ARCHETYPED. T Beale 3 Jan 2003

1.3.3 Minor corrections: OBJECT_ID; changed syntax of
TERMINOLOGY_ID. Corrected Fig 6.

T Beale 17 Nov 2002

1.3.2 Added Generic Package; added PARTICIPATION and changed
and moved ATTESTATION class.

T Beale 8 Nov 2002

1.3.1 Removed EXTERNAL_ID.iso_oid. Remodelled EXTERNAL_ID
into new classes - OBJECT_REF and OBJECT_ID. Remodelled all
change control classes.

T Beale,
D Lloyd,

M Darlison,
A Goodchild

22 Oct 2002

1.3 Moved ARCHETYPE_ID.iso_oid to EXTERNAL_ID. DV_LINK no
longer a data type; renamed to LINK.

T Beale 22 Oct 2002

1.2 Removed Structure package to own document. Improved CM
diagrams.

T Beale 11 Oct 2002

1.1 Removed HCA_ID. Included Spatial package from EHR RM.
Renamed SPATIAL to STRUCTURE.

T Beale 16 Sep 2002

1.0 Taken from EHR RM. T Beale 26 Aug 2002

Issue Details Raiser Completed
Date of Issue: 08 Apr 2007 Page 6 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model
Rev 2.1.0
Prime Minister and Cabinet of the Commonwealth Government of Australia; Ocean Informatics,
Australia.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 7 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Common Information Model
Rev 2.1.0
Date of Issue: 08 Apr 2007 Page 8 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model
Rev 2.1.0
Table of Contents

1 Introduction...11
1.1 Purpose...11
1.2 Related Documents ..11
1.3 Status..11
1.4 Peer review ..11
1.5 Conformance..12

2 Overview ... 13
3 Archetyped Package .. 15
3.1 Overview..15
3.1.1 The PATHABLE Class...15
3.1.2 The LOCATABLE Class..16
3.1.3 Feeder System Audit..17
3.2 Class Descriptions..21
3.2.1 Class PATHABLE..21
3.2.2 Class LOCATABLE...22
3.2.3 ARCHETYPED Class ...23
3.2.4 LINK Class ..24
3.2.5 FEEDER_AUDIT Class ..25
3.2.6 FEEDER_AUDIT_DETAILS Class ..26

4 Generic Package... 29
4.1 Overview..29
4.2 Design Principles ...30
4.2.1 Referring to Demographic Entities ..30
4.2.2 Participation ...31
4.2.3 Audit Information ..31
4.2.4 Attestation..31
4.3 Class Descriptions..33
4.3.1 PARTY_PROXY Class..33
4.3.2 PARTY_SELF Class ..33
4.3.3 PARTY_IDENTIFIED Class ...34
4.3.4 PARTY_RELATED Class..34
4.3.5 PARTICIPATION Class ...35
4.3.6 AUDIT_DETAILS Class ...36
4.3.7 ATTESTATION Class..37
4.3.8 REVISION_HISTORY Class ..37
4.3.9 REVISION_HISTORY_ITEM Class ..38

5 Directory Package .. 39
5.1 Overview..39
5.1.1 Paths...39
5.2 Class Descriptions..40
5.2.1 VERSIONED_FOLDER Class..40
5.2.2 FOLDER Class ..40

6 Change Control Package ... 41
6.1 Overview..41
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 9 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Common Information Model
Rev 2.1.0
6.2 Basic Semantics... 42
6.2.1 Typing.. 42
6.2.2 Versioned Objects.. 42
6.2.3 Version and its Subtypes.. 42
6.2.4 The “Virtual Version Tree”.. 44
6.2.5 Contributions ... 44
6.2.6 Committal and Audits ... 45
6.2.7 Digital Signature.. 46
6.2.8 Attestation ... 47
6.3 Versioning Semantics .. 48
6.3.1 Version Lifecycle... 48
6.3.2 Logical Deletion .. 48
6.3.3 Version Identification .. 49
6.4 Semantics in Distributed Systems ... 50
6.4.1 Copying ... 50
6.4.2 Version Merging .. 52
6.4.3 Disjoint Merging ... 53
6.4.4 Moving Version Containers... 55
6.5 Class Descriptions ... 55
6.5.1 VERSIONED_OBJECT Class .. 55
6.5.2 VERSION Class .. 59
6.5.3 ORIGINAL_VERSION Class... 60
6.5.4 IMPORTED_VERSION Class.. 61
6.5.5 CONTRIBUTION Class ... 61

7 Resource Package... 63
7.1 Overview ... 63
7.1.1 Natural Languages and Translation... 63
7.1.2 Meta-data... 63
7.1.3 Revision History.. 64
7.2 Class Definitions ... 64
7.2.1 AUTHORED_RESOURCE Class .. 64
7.2.2 TRANSLATION_DETAILS Class ... 65
7.2.3 RESOURCE_DESCRIPTION Class... 66
7.2.4 RESOURCE_DESCRIPTION_ITEM Class 68

A References ... 69
A.1 General .. 69
A.2 European Projects.. 69
A.3 CEN ... 69
A.4 OMG.. 69
A.5 Software Engineering .. 70
A.6 Resources... 70
Date of Issue: 08 Apr 2007 Page 10 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Introduction
Rev 2.1.0
1 Introduction

1.1 Purpose
This document describes the architecture of the openEHR Common Reference Model, which contains
patterns used by other openEHR reference models.

The intended audience includes:

• Standards bodies producing health informatics standards;
• Software development groups using openEHR;
• Academic groups using openEHR;
• The open source healthcare community;
• Medical informaticians and clinicians intersted in health information;
• Health data managers.

1.2 Related Documents
Prerequisite documents for reading this document include:

• The openEHR Architecture Overview
• The openEHR Modelling Guide
• The openEHR Support Information Model
• The openEHR Data Types Information Model
• The openEHR Data Structures Information Model

1.3 Status
This document is under development, and is published as a proposal for input to standards processes
and implementation works.

This document is available at http://svn.openehr.org/specification/TAGS/Release-
1.0.1/publishing/architecture/rm/common_im.pdf.

The latest version of this document can be found at http://svn.openehr.org/specifica-
tion/TRUNK/publishing/architecture/rm/common_im.pdf.

New versions are announced on openehr-announce@openehr.org.

Blue text indicates sections under active development.

1.4 Peer review
Areas where more analysis or explanation is required are indicated with “to be continued” paragraphs
like the following:

To Be Continued: more work required

Reviewers are encouraged to comment on and/or advise on these paragraphs as well as the main con-
tent. Please send requests for information to info@openEHR.org. Feedback should preferably be
provided on the mailing list openehr-technical@openehr.org, or by private email.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 11 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://svn.openehr.org/specification/TAGS/Release-1.0.1/publishing/architecture/rm/common_im.pdf
http://svn.openehr.org/specification/TAGS/Release-1.0.1/publishing/architecture/rm/common_im.pdf
http://svn.openehr.org/specification/TRUNK/publishing/architecture/rm/common_im.pdf
http://svn.openehr.org/specification/TRUNK/publishing/architecture/rm/common_im.pdf
mailto:openehr-technical@openehr.org
mailto:openehr-announce@openehr.org
mailto:info@gehr.org
mailto:openehr-technical@openehr.org

Introduction Common Information Model
Rev 2.1.0
1.5 Conformance
Conformance of a data or software artifact to an openEHR Reference Model specification is deter-
mined by a formal test of that artifact against the relevant openEHR Implementation Technology
Specification(s) (ITSs), such as an IDL interface or an XML-schema. Since ITSs are formal, auto-
mated derivations from the Reference Model, ITS conformance indicates RM conformance.
Date of Issue: 08 Apr 2007 Page 12 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Overview
Rev 2.1.0
2 Overview
The common Reference Model comprises a number of packages containing abstract concepts and
design patterns used in higher level openEHR models. The package structure is illustrated in FIGURE
1.

The archetyped package is informed by a number of design principles, centred on the concept of
‘two-level’ modelling. These principles are described in detail in [1].

The generic package contains classes forming ‘analysis patterns’ which are generic across the
domain, mostly to do with referencing demographic entities from within other data including Partici-
pation, Party_proxy, Attestation and so on.

The directory package provides a simple reusable abstraction of a versioned folder structure.

The change_control package defines the generalised semantics of changes to a logical repository,
such as an EHR, over time. Each item in such a repository is version-controlled to allow the reposi-
tory as a whole to be properly versioned in time. The semantics described are in response to medico-
legal requirements defined in GEHR [9], and in the ISO Technical Specification 18308 [4]. Both of
these requirements specifications mention specifically the version control of the health record.

The resource package defines semantics of an online authored resource, such as a document, and
supports multiple language translations, descriptive meta-data and revision history.

FIGURE 1 rm.common Package

genericarchetyped
common

change_control resourcedirectory
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 13 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Overview Common Information Model
Rev 2.1.0
Date of Issue: 08 Apr 2007 Page 14 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Archetyped Package
Rev 2.1.0
3 Archetyped Package

3.1 Overview
The archetyped package defines the core types PATHABLE, LOCATABLE, ARCHETYPED, and LINK.
It is illustrated in FIGURE 2.

3.1.1 The PATHABLE Class
The PATHABLE class defines the pathing capabilities used by nearly all classes in the openEHR refer-
ence model, mostly via inheritance of LOCATABLE. The defining characteristics of PATHABLE objects
are that they can locate child objects using paths, and they know their parent object in a composi-
tional hierarchy. The parent feature is defined as abstract in the model, and may be implemented in
any way convenient.

A number of functions provide the path functionality, of which item_at_path() and
items_at_path() are the key functions. The former returns an item corresponding to a unique
path, i.e. a path that resolves against the data structure to a single node. The latter returns a list of
items corresponding to a non-unique path. These functions can be used safely using the following pat-
tern, but can also be used without checking the validity of paths, if this is known a priori in the code
anyway.

if path_exists(a_path) {
if path_unique(a_path) {

x := item_at_path(a_path)

FIGURE 2 rm.common.archetyped Package

LOCATABLE
name[1]: DV_TEXT
archetype_node_id[1]: String
uid[0..1]: UID_BASED_ID
concept: DV_TEXT
is_archetype_root: Boolean

ARCHETYPED
archetype_id[1]: ARCHETYPE_ID
template_id[0..1]: TEMPLATE_ID
rm_version[1]: String

archetyped

* {set}
links

LINK
meaning[1]: DV_TEXT
type[1]: DV_TEXT
target[1]: DV_EHR_URI

0..1

archetype
_details

FEEDER_AUDIT_DETAILS
system_id[1]: String
location[0..1]: PARTY_IDENTIFIED
provider[0..1]: PARTY_IDENTIFIED
subject[0..1]: PARTY_PROXY
time[0..1]: DV_DATE_TIME
version_id[0..1]: String

FEEDER_AUDIT
originating_system_item_ids[0..1]:
List<DV_IDENTIFIER>
feeder_system_item_ids[0..1]:
List<DV_IDENTIFIER>
original_content[0..1]:
DV_ENCAPSULATED

1

originating_
system_audit

0..1

feeder_
system_audit

0..1

feeder
_audit

PATHABLE

parent: PATHABLE
item_at_path (a_path: String): Any
items_at_path (a_path: String): List<Any>
path_exists (a_path: String): Boolean
path_unique (a_path: String): Boolean
path_of_item (a_loc: PATHABLE): String
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 15 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetyped Package Common Information Model
Rev 2.1.0
// process one item
}
else {

list_of_x := items_at_path(a_path)
//iterate the list

}
}

3.1.2 The LOCATABLE Class
Most classes in the openEHR reference model inherit from the LOCATABLE class, which defines the
idea of ‘locatability in an archetyped structure’. LOCATABLE defines a runtime name and an
archetype_node_id. The archetype_node_id is the standardised semantic code for a node and comes
from the corresponding node in the archetype used to create the data. The only exception is at arche-
type root points in data, where archetype_node_id carries the archetype identifier in string form rather
than an interior node id from an archetype. LOCATABLE also provides the attribute archetype_details,
which is non-Void for archetype root points in data, and carries meta-data relevant to root points. The
name attribute carries a name created at runtime. The ‘meaning’ of any node is derived formally from
the archetype by obtaining the “text” value for the archetype_node_id code from the archetype ontol-
ogy, in the language required.

The name and archetype_node_id values in a LOCATABLE instance are often the same semantically,
but may differ. For example, in “problem/SOAP” Sections (i.e. headings), the name of a section at
the problem level might be “diabetes”, but its meaning might be “problem”. The default value for
name should be assumed to be the text value in the local language for the archetype_node_id code on
the node in question, unless explicitly set otherwise.

Unique Node Identification
LOCATABLE descendants may have a uid. In the current openEHR architecture, uids are not needed to
identify data nodes, since paths are used to reference all nodes inside top-level structures (i.e. COMPO-
SITIONs etc). Accordingly all references between parts of an EHR are represented in terms of
LOCATABLE_REFs or DV_EHR_URIs (the former is a reference to an OBJECT_VERSION_ID with a
path appended; the latter is the stringified URI form). This would allow for example, one Entry to ref-
erence the serum sodium value in another Entry in version 2 of a Versioned Composition for a labora-
tory test on 12/Apr/2004. The uid attribute will usually be empty in most EHR data in most openEHR
EHR systems.

The exception is the top-level types such as COMPOSITION, EHR_STATUS, PARTY etc for which it is
recommended to set the uid value to a copy of the uid attribute of the owning VERSION object. This
enables easy identification of standalone top-level objects in a serialised form

Another use for LOCATABLE.uid is in EHR Extracts, which contain serialised expressions of EHR
content. In an Extract, the uid could be set on some or all nodes to a value generated by concatenating
the uid of the enclosing Version object (i.e. VERSION.uid) and the unique runtime path to the particu-
lar node. This may be useful to the receiver system for the purpose of referencing particular data
nodes when communicating to the sender, or another system. This use of uids is not however manda-
tory, since for each node in an Extract item, the uid can be generated at any time (including at the
receiver system).

Note: some classes in the openEHR architecture that do not inherit from LOCATABLE but require a
uid, such as VERSIONED_OBJECT, VERSION etc, explicitly define their own uid attribute.
Date of Issue: 08 Apr 2007 Page 16 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Archetyped Package
Rev 2.1.0
3.1.3 Feeder System Audit
The data in any part of the EHR may be obtained from a feeder system, i.e. a source system which
does not obey the versioning, auditing and content semantics of openEHR (data in the EHR which
have been sourced from another openEHR system are dealt with in the Common IM, Change control
section). The FEEDER_AUDIT class defines the semantics of an audit trail which is constructed to
describe the origin of data that have been transformed into openEHR form and committed to the sys-
tem. There are a number of aspects to the problem of transforming data for committal into an
openEHR system, dealt with in the following subsections.

Requirements
The model of Feeder audit is designed to satisfy the following requirements with respect to EHR con-
tent sourced from non-openEHR systems:

• record medico-legal audit information from the originating system (e.g. pathology lab sys-
tem) similar to that captured in the AUDIT_DETAILS class in the change_control pack-
age;

• record information identifying the immediate system from which the content was obtained
(might not be the originating system);

• record sufficient information to distinguish incoming items from each other, and to enable
the detection of duplicates and new versions of the same item;

• allow the inclusion of the source content either as a link or inline.

Design Principles
The design of the Feeder audit part of the reference model is based on a generalised model of data
communication in which various elements are identified, as follows:

the originating system: the computer system where the information item was initially created,
e.g. the system at a pathology laboratory or a reporting system for a number of laboratories;

intermediate systems: any system which moves information from the originating system to an
openEHR system;

the feeder system: the intermediate system from which the information item was directly
obtained by the openEHR system; this might be the originating system, or it may be a
distinct intermediate system;

the committing openEHR system: the openEHR system where the information item is
transformed into openEHR form and committed as a Composition;

openEHR converter: a component whose job it is to convert non-openEHR information into a
form compliant with the openEHR reference model and chosen archetypes;

original content store: some EHR systems may have an associated persistent repository of
content as received from external systems, e.g. a message or document database.

FIGURE 3 illustrates these elements, shown as a “feeder chain”, along with typical meta-data availa-
ble in messages from each system. In general, not much can be assumed about systems in the feeder
chain. The originating system may or may not correspond to the place of the clinical activity - it is not
uncommon for a pathology company to have a centralised report issuing location while having
numerous physical laboratories. There is often limited consistency in the way identifiers are assigned,
timestamps are created, and information is structured and coded. In general, information from a
feeder system is in response to a request, often a pathology order, although the request/response pat-
tern probably cannot be assumed in all cases.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 17 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetyped Package Common Information Model
Rev 2.1.0
The idea underlying the openEHR Feeder audit model is that there are two groups of meta-data which
should be recorded about an imported information item. The first is medico-legal meta-data about its
creation: the system of origin, who created it and when it was created. The second is identifying
meta-data for the item from the originating and feeder system, and potentially other intermediate sys-
tems in the feeder chain, where necessary to support duplicate detection, version detection and so on.

Meta-data
The potentially available medico-legal meta-data about the received item is as follows:

• identifier of the originating system (where the item was originally committed);
• identifier of the information item in the originating system;
• agent who committed the item;
• timestamp of committal or creation of the item;
• type of change, e.g. initial creation, correction (including deletion of a subpart), logical dele-

tion (e.g. due to cancellation of order);
• status of information, e.g. interim, final;
• version id, where versioning is supported.

The above information is equivalent to the audit trail and versioning data captured when information
created in an openEHR system is committed in a Composition version.

Various kinds of identifying information may be required including the following:

• subject identifier (often more than one, e.g. national patient id, GP’s local patient id, lab’s
local patient id) are usually recorded and may be required for traceability purposes;

• subject identifier(s) may identify someone other than the subject of the record as being the
subject of the incoming item;

• location of the feeder system;
• identifier of the feeder system (which may be one of many at the feeder system location);
• identifer the feeder system uses for the item in question (often known as an “accession id”);
• identifier of request or order to which the information is a response (sometimes known as a

“placer’s request id”);
• identifier of the information item used by the originating system (sometimes known as a

“filler’s request id”);

FIGURE 3 Abstract model of feeder chain

originating
system

intermediate
system

committing
openEHR

system

op
en

EH
R

co
nv

er
te

r

feeder
system

• order placer rq id
• order filler rq id

• order filler rq id

• test type or code
• gateway item id

• order filler rq id
• gateway item id

• time of creation
• timestamp(s) • timestamp(s)

• person/machine
committing

• subject_id(s)

• person forwarding• person forwarding

location
of clinical

activity

location
of clinical

activity

• location

• version/update status

original
content store
Date of Issue: 08 Apr 2007 Page 18 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Archetyped Package
Rev 2.1.0
• timestamp(s) assigned by feeder system to the item.

Some or all of this information will usually be sufficient to perform a number of tasks as follows.

Traceability
The first task is to support medico-legal investigation into the path of the information item through
the health computing infrastructure. This requires the availability of sufficient identifier information
that the origin of the information item can be traced.

Subject identifiers where available should be used to ensure that the received data go into the correct
EHR, by ensuring that the relevant lookups in client directories or other lookup mechanisms can be
effected. Again, in rare cases, the subject of the incoming data item may not necessarily be the subject
of the EHR - a test result may be made from a relative or other associate which will be stored in the
patient’s EHR.

Version Detection
The second is to detect new versions of an item (e.g. interim and final versions of a microbiology test
result). This can usually be achieved by using various identifiers as well as the originating system ver-
sion id and/or content status (interim, final etc). A new openEHR Composition version should always
be created for each received version, even where the content does not change at all (e.g. a microbiol-
ogy test where the result is “no growth” in both interim and final results).

Duplicate Detection
Another task is to disambiguate duplicates (often caused by failure of a network connection during
sending) coming from the feeder system. In some cases however duplicates are erroneously given
new ids by the feeder system, giving the receiver the impression of a new information. In such cases,
a further item of meta-data may be required:

• hash or content signature generated (most likely by the converter) from the received infor-
mation.

Differentially Coded Data
A further problem is that the originating system may send new versions of an item which are not com-
plete in and of themselves, i.e. which only include new or changed elements with respect to a previ-
ous send of the same item. An example is a system which sends a correction to an HL7v2 blood test
message, where the correction includes just the “serum sodium” data item. In this case, special
processing will be required in the openEHR converter component, in order to regenerate a full data
item from difference data when it is received. Such processing may also have to take account of
deleted items.

In summary, the Feeder audit class design tries to accommodate the recording of as much of the above
meta-data as is relevant in any particular case. It is up to the design of openEHR conversion front-end
components as well as proper analysis of the situation to determine which identifiers are germane to
the needs of traceability. In general, any meta-data of medico-legal significance should be captured
where it is available.

Using Feeder Audit in Converted Data
Although the design of the openEHR converter is outside the scope of the current document, it is
worth considering a common design approach, and where the FEEDER_AUDIT class fits in. An effec-
tive way of converting non-openEHR data such as HL7v2 messages, relational data etc, is in two
steps. The first is to perform a ‘syntactic’ conversion to Compositions containing instances of the
GENERIC_ENTRY class (described in the Integration IM), using ‘legacy archetypes’. The resulting
database will contain versioned Compositions containing GENERIC_ENTRY instances; logically this
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 19 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetyped Package Common Information Model
Rev 2.1.0
database does not contain EHRs but simply external data converted to openEHR computational form.
The relevant FEEDER_AUDIT instances should be attached to the Compositions containing the corre-
sponding GENERIC_ENTRY instances. The second step is to perform a ‘semantic’ conversion to sub-
types of ENTRY, i.e. OBSERVATION, EVALUATION, INSTRUCTION and ACTION, according to
standardised clinical archetypes. There are various possibilities for what to do with the Feeder audit.
The minimum Feeder audit required on the final instance contains the originating system audit infor-
mation, but none of the information to do with feeder or intermediate systems. This will satisfy
medico-legal needs. Alternatively, a complete copy could be made, even though the feeder-related
meta-data is probably only of use in the conversion environment. What the Feeder audit looks like in
the EHR proper may depend on local legislation, norms or other factors. Alternative conversion
approaches are also possible, in which no intermediate form of data exists.

Structural Correspondence
There is no guarantee that the granularity of information recorded in the feeder system obeys the rules
of Entries, Compositions, etc. As a consquence, feeder information might correspond to any level of
information defined in the openEHR models. In order to be able to record feeder audit information
correctly, the model has to be able to associate an audit trail with any granularity of object. For this
reason, feeder audit information is attached to the LOCATABLE class via the feeder_audit attribute,
even though it is preferable by design to have it attached to the equivalent of Compositions or at least
the equivalent of archetype entities (i.e. Compositions, Section trees and Entries). Its usual usage is to
attach it to the outermost object to which it applies. In other words, in most cases, during a legacy data
conversion process, the entirety of a Composition needs only one FEEDER_AUDIT to document its
origins. In exceptional cases, where feeder data comes in in near real time, e.g. from an ICU database,
separate FEEDER_AUDIT objects may need to be generated for parts of a Composition; each commit
in this situation will create a stack of versions of one Composition, with a growing number of
FEEDER_AUDIT objects attached to internal data nodes, each documenting the last import of data.

The Feeder audit information is included as part of the data of the Composition, rather than part of the
audit trail of version committal, because it remains relevant throughout the versioning of a logical
Composition, i.e. when a new version is created, the feeder information is retained as part of the cur-
rent version to be seen and possibly modified, just as for the rest of its content. If the main part of the
content is modified so drastically as to make the feeder audit irrelevant, it too can be removed.

A second consequence of feeder and legacy systems is that structural data items may need to be syn-
thesised in order to create valid structures, even though the source system does not have them. For
example, a system may have the equivalent data of Clusters and Elements (see openEHR Data Struc-
ture IM or CEN EN13606), but no Entries, Sections or other higher-level data items; these have to be
synthesised during conversion. To indicate synthesis of a data node, a FEEDER_AUDIT instance is
attached to the LOCATABLE in question, and its change_type set to “synthesised”.

Original Content
The features of the model described so far allow accurate referencing of content as it is known in
source systems and intermediate feeder systems. A further feature of the FEEDER_AUDIT class, the
original_content attribute allows the original content item itself to be either included inline or pointed
to. If a link is used, the usual situation is that the content is in a store associated with the receiving
system, such as a message or document database. The content could also be included inline. Since the
original_content link is on a FEEDER_AUDIT object, more than one can be used within the same gen-
erated Composition if required. It may be deemed preferable to attach only a single link at the top
node, i.e. the Composition node, since this establishes basic equivalent between the whole Composi-
tion and the whole document or message.
Date of Issue: 08 Apr 2007 Page 20 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Archetyped Package
Rev 2.1.0
3.2 Class Descriptions

3.2.1 Class PATHABLE

CLASS PATHABLE (abstract)

Purpose
Abstract parent of all classes whose instances are reachable by paths, and which
know how to locate child object by paths. The parent feature may be imple-
mented as a function or attribute.

Abstract Signature Meaning

0..1 parent: PATHABLE Parent of this node in compositional
hierarchy.

Functions Signature Meaning

path_of_item (an_item: PATHA-
BLE): String
require
item_valid: an_item /= Void

The path to an item relative to the root of
this archetyped structure.

item_at_path (a_path: String): Any
require
a_path /=Void and then

path_unique(a_path)
ensure
Result /= Void

The item at a path (relative to this item);
only valid for unique paths, i.e. paths
that resolve to a single item.

items_at_path (a_path: String):
List<Any>
require
path /=Void and then not

path_unique(a_path)
ensure
Result /= Void

List of items corresponding to a non-
unique path.

path_exists (a_path: String):
Boolean
require
path_valid: a_path /= Void and

then not a_path.is_empty

True if the path exists in the data with
respect to the current item.

path_unique (a_path: String):
Boolean
require
path_valid: a_path /= Void and

then path_exists(a_path)

True if the path corresponds to a single
item in the data.

Invariant
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 21 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetyped Package Common Information Model
Rev 2.1.0
3.2.2 Class LOCATABLE

CLASS LOCATABLE (abstract)

Purpose Root class of all information model classes that can be archetyped.

CEN RECORD_COMPONENT

GEHR Name attribute in ARCHETYPED, meaning attribute in G1_PLAIN_TEXT.

Synapses

Each record component includes a Synapses Object ID attribute to reference the
Synapses Object (archetype) used as the basis for its construction. All record
components include a name attribute intended for the same purpose as the
openEHR equivalent.

Inherit PATHABLE

Attributes Signature Meaning

0..1
uid: UID_BASED_ID Optional globally unique object identi-

fier for root points of archetyped struc-
tures.

1..1

archetype_node_id: String Design-time archetype id of this node
taken from its generating archetype;
used to build archetype paths. Always in
the form of an “at” code, e.g. “at0005”.
This value enables a "standardised"
name for this node to be generated, by
referring to the generating archetype
local ontology.

At an archetype root point, the value of
this attribute is always the stringified
form of the archetype_id found in the
archetype_details object.

1..1

name: DV_TEXT Runtime name of this fragment, used to
build runtime paths. This is the term pro-
vided via a clinical application or batch
process to name this EHR construct: its
retention in the EHR faithfully preserves
the original label by which this entry
was known to end users.

0..1 archetype_details:
ARCHETYPED

Details of archetyping used on this node.
Date of Issue: 08 Apr 2007 Page 22 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Archetyped Package
Rev 2.1.0
3.2.3 ARCHETYPED Class

0..1

feeder_audit: FEEDER_AUDIT Audit trail from non-openEHR system
of original commit of information form-
ing the content of this node, or from a
conversion gateway which has synthe-
sised this node.

0..1

links: Set <LINK> Links to other archetyped structures
(data whose root object inherits from
ARCHETYPED, such as ENTRY, SECTION
and so on). Links may be to structures in
other compositions.

Functions Signature Meaning

1..1 is_archetype_root: Boolean True if this node is the root of an arche-
typed structure.

0..1
concept: DV_TEXT
require
is_archetype_root

Clinical concept of the archetype as a
whole (= derived from the
‘archetype_node_id’ of the root node)

Invariant

Name_valid: name /= Void
Links_valid: links /= Void implies not links.empty
Archetyped_valid: is_archetype_root xor archetype_details = Void
Archetype_node_id_valid: archetype_node_id /= Void and then not
archetype_node_id.is_empty

CLASS ARCHETYPED

Purpose

Archetypes act as the configuration basis for the particular structures of instances
defined by the reference model. To enable archetypes to be used to create valid
data, key classes in the reference model act as “root” points for archetyping;
accordingly, these classes have the archetype_details attribute set. An instance of
the class ARCHETYPED contains the relevant archetype identification information,
allowing generating archetypes to be matched up with data instances

GEHR G1_ARCHETYPED

Synapses/
SynEx

The SynEx approach does not distinguish between multiple layers of archetypes;
hence an ‘archetype’ covers all information in an entire composition. Conse-
quently, there is only one place where archetype identifiers in the openEHR sense
are used (at the top); all other archetype identifiers are equivalent to the
archetype_node_id attribute from LOCATABLE.

The Synapses ObjectID attribute provides a unique reference to each fine-grained
element of an archetype, and is therefore also functionally equivalent to the
archetype_id attribute at the root points in an openEHR structure.

CLASS LOCATABLE (abstract)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 23 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetyped Package Common Information Model
Rev 2.1.0
3.2.4 LINK Class

CEN

The 1999 pre-standard does not include any equivalent to the archetype concept.
However each architectural component must include a reference to an entry in the
relevant normative table in the Domain Termlist pre-standard (part 2), to provide
a high-level semantic classification of the component. All Architectural compo-
nents include a component name structure to specify its label: the source of possi-
ble values for such a label was not clearly defined.

The 2005 revision of EN 13606 explicitly includes archetype identification
attributes in the class RECORD_COMPONENT.

Attributes Signature Meaning

1..1 archetype_id: ARCHETYPE_ID Globally unique archetype identifier.

0..1

template_id: TEMPLATE_ID Globally unique template identifier, if a tem-
plate was active at this point in the structure.
Normally, a template would only be used at
the top of a top-level structure, but the possi-
bility exists for templates at lower levels.

1..1

rm_version: String Version of the openEHR reference model
used to create this object. Expressed in terms
of the release version string, e.g. “1.0”,
“1.2.4”.

Invariant archetype_id_valid: archetype_id /= Void
rm_version_valid: rm_version /= Void and then not rm_version.is_empty

CLASS LINK

Purpose

The LINK type defines a logical relationship between two items, such as two
ENTRYs or an ENTRY and a COMPOSITION. Links can be used across composi-
tions, and across EHRs. Links can potentially be used between interior (i.e. non
archetype root) nodes, although this probably should be prevented in archetypes.
Multiple LINKs can be attached to the root object of any archetyped structure to
give the effect of a 1->N link

Use

1:1 and 1:N relationships between archetyped content elements (e.g. ENTRYs)
can be expressed by using one, or more than one, respectively, DV_LINKs.
Chains of links can be used to see “problem threads” or other logical groupings of
items.

MisUse

Links should be between archetyped structures only, i.e. between objects repre-
senting complete domain concepts because relationships between sub-elements
of whole concepts are not necessarily meaningful, and may be downright confus-
ing. Sensible links only exist between whole ENTRYs, SECTIONs, COMPOSI-
TIONs and so on.

CLASS ARCHETYPED
Date of Issue: 08 Apr 2007 Page 24 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Archetyped Package
Rev 2.1.0
3.2.5 FEEDER_AUDIT Class

CEN
The Link Item class is a simplified form of the Synapses Link Item, permitting
links to be established but with limited labelling and no representation for impor-
tance.

Synapses

The Link Item class provides the means to link any arbitrary parts of a single
EHR, for the overall linkage network to be labelled and revised, and for each
direct link to be labelled explicitly. An importance attribute provides guidance on
how links should be handled if only part of a linkage network is requested by a
client process.

GEHR n/a

HL7v3 The ACT_RELATIONSHIP class in some cases appears to correspond to LINK.

Attributes Signature Meaning

1..1

meaning: DV_TEXT Used to describe the relationship, usually in
clinical terms, such as “in response to” (the
relationship between test results and an order),
“follow-up to” and so on. Such relationships
can represent any clinically meaningful connec-
tion between pieces of information.

Values for meaning include those described in
Annex C, ENV 13606 pt 2 [11] under the cate-
gories of “generic”, “documenting and report-
ing”, “organisational”, “clinical”,
“circumstancial”, and “view management”.

1..1

type: DV_TEXT The type attribute is used to indicate a clinical
or domain-level meaning for the kind of link,
for example “problem” or “issue”. If type val-
ues are designed appropriately, they can be used
by the requestor of EHR extracts to categorise
links which must be followed and which can be
broken when the extract is created.

1..1 target: DV_EHR_URI The logical “to” object in the link relation, as
per the linguistic sense of the meaning attribute.

Invariant
Meaning_valid: meaning /= Void
Type_valid: type /= Void
Target_valid: target /= Void

CLASS FEEDER_AUDIT

Purpose Audit and other meta-data for systems in the feeder chain.

CLASS LINK
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 25 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetyped Package Common Information Model
Rev 2.1.0
3.2.6 FEEDER_AUDIT_DETAILS Class

Attributes Signature Meaning

1..1 originating_system_audit:
FEEDER_AUDIT_DETAILS

Any audit information for the information
item from the originating system.

0..1 originating_system_item_ids:
List<DV_IDENTIFIER>

Identifiers used for the item in the originating
system, e.g. filler and placer ids.

0..1
feeder_system_audit:
FEEDER_AUDIT_DETAILS

Any audit information for the information
item from the feeder system, if different from
the originating system.

0..1
feeder_system_item_ids:
List<DV_IDENTIFIER>

Identifiers used for the item in the feeder sys-
tem, where the feeder system is distinct from
the originating system.

0..1

original_content:
DV_ENCAPSULATED

Optional inline inclusion of or reference to
original content corresponding to the
openEHR content at this node. Typically a
URI reference to a document or message in a
persistent store associated with the EHR.

Invariants Originating_system_audit_valid: originating_system_audit /= Void

CLASS FEEDER_AUDIT_DETAILS

Purpose

Audit details for any system in a feeder system chain. Audit details here means
the general notion of who/where/when the information item to which the audit is
attached was created. None of the attributes is defined as mandatory, however, in
different scenarios, various combinations of attributes will usually be mandatory.
This can be controlled by specifying feeder audit details in legacy archetypes.

Attributes Signature Meaning

1 system_id: String Identifier of the system which handled the
information item.

0..1 provider:
PARTY_IDENTIFIED

Optional provider(s) who created, committed,
forwarded or otherwise handled the item.

0..1

location: PARTY_IDENTIFIED Identifier of the particular site/facility within
an organisation which handled the item. For
computability, this identifier needs to be e.g. a
PKI identifier which can be included in the
identifier list of the PARTY_IDENTIFIED
object.

CLASS FEEDER_AUDIT
Date of Issue: 08 Apr 2007 Page 26 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Archetyped Package
Rev 2.1.0
0..1

time: DV_DATE_TIME Time of handling the item. For an originating
system, this will be time of creation, for an
intermediate feeder system, this will be a time
of accession or other time of handling, where
available.

0..1 subject: PARTY_PROXY Identifiers for subject of the received informa-
tion item.

0..1
version_id: String Any identifier used in the system such as

“interim”, “final”, or numeric versions if
available.

Invariants System_id_valid: system_id /= Void and then not system_id.is_empty

CLASS FEEDER_AUDIT_DETAILS
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 27 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Archetyped Package Common Information Model
Rev 2.1.0
Date of Issue: 08 Apr 2007 Page 28 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Generic Package
Rev 2.1.0
4 Generic Package

4.1 Overview
The classes presented in this section are abstractions of concepts which are generic patterns in the
domain of health (and most likely other domains), such as ‘participation’ and ‘attestation’. The
generic cluster is illustrated in FIGURE 4.

FIGURE 4 rm.common.generic Package

PARTICIPATION
function[1]: DV_TEXT
time[0..1]: DV_INTERVAL
<DV_DATE_TIME>
mode[1]:
DV_CODED_TEXT

generic

performer

1

ATTESTATION
attested_view[0..1]: DV_MULTIMEDIA
proof[0..1]: String
items[0..1]: Set<DV_EHR_URI>
reason[1]: DV_TEXT
is_pending[1]: Boolean

PARTY_RELATED
relationship[1]:
DV_CODED_TEXT

PARTY_IDENTIFIED
name[0..1]: String
identifiers[0..1]:
List<DV_IDENTIFIER>

external_ref

0..1

AUDIT_DETAILS
system_id[1]: String
time_committed[1]: DV_DATE_TIME
change_type[1]: DV_CODED_TEXT
description[0..1]: DV_TEXT

1

committer

REVISION_
HISTORY_ITEM
version_id[1]:
OBJECT_
VERSION_ID

PARTY_SELF

PARTY_PROXY

coded by openEHR
Terminology group
“audit change type”

coded by openEHR
Terminology group
“participation function”

coded by openEHR
Terminology group
“participation mode”

coded by openEHR
Terminology group
“subject relationship”

coded by openEHR
Terminology group
“attestation reason”

items *

REVISION_HISTORY

most_recent_version:
String
most_recent_version_
time_committed: String

audits

1..*

free text or

free text or

(rm.support.
PARTY_REF

identification)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 29 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Generic Package Common Information Model
Rev 2.1.0
4.2 Design Principles

4.2.1 Referring to Demographic Entities
There are two ways to refer to a demographic identity in the openEHR EHR: using PARTY_REF
directly, which records an identifier of the party in some external system, and using PARTY_PROXY,
consisting of a small amount of descriptive data, depending on the subtype, and an optional
PARTY_REF. The semantics of PARTY_REF are described in the Common IM, identification package,
while the semantics of PARTY_PROXY and use of PARTY_REF in such entities are described below.

The approach taken in openEHR for representing demographic and user entities in the EHR data is
based on the following assumptions:

• there is at least one human readable name or official identifier of the party, such as “Julius
Marlowe, MD”, “NHS provider number 1039385”, or a system user id such as
“Rahil.Azam”;

• there might be data in a service external to the EHR for the party in question, such as a
demographic, identity management or patient index service; if there is, it should be refer-
enceable;

• the subject of the record is never to be identified in any direct way (i.e. via the use of her
name or other human-readable details), but may include a meaningless identifier in some
external system.

The PARTY_PROXY class and subtypes model references to parties based on these assumptions. The
semantics of PARTY_PROXY enable a flexible approach: in stricter environments that have identity
management and demographic services, and where there is an entry in such a service for the party in
question, PARTY_PROXY.external_ref will be non-Void, while in other environments, it will be empty.

The two subtypes correspond to the mutually distinct categories of the ‘subject of the record’, known
as the ‘self’ party in openEHR, and any other party. Whenever the record subject has to be referred to
in the record, an instance of PARTY_SELF is used, while PARTY_IDENTIFIED is used for all other
situations. The latter class provides for optional human-readable names and formal identifiers, each
keyed by purpose or meaning.

The RELATED_PARTY type is used whenever the relationship of the party to the record subject is
required. Relationships are coded and include familial ones (‘mother’, ‘uncle’, etc) as well as rela-
tionships like ‘donor’, ‘travelling companion’ and so on.

PARTY_SELF and Referring to the Patient from the EHR
There are three schemes which are likely to be used for referring to patient (i.e. the record subject)
demographic or patient master index (PMI) data from within the EHR, each likely to be valid in dif-
ferent circumstances. Each uses a PARTY_SELF object but with varying usage of the external_ref
attribute, and are as follows.

• The external_ref attribute is not set on any instances of PARTY_SELF, i.e. nowhere in the
EHR. This is the most secure approach, and means that the link between the EHR and the
patient has to be done outside the EHR, by associating EHR.ehr_id and the patient demo-
graphic/PMI identifier. This approach is more likely in more open data sharing environ-
ments.

• The external_ref attribute is set once only in EHR_STATUS.subject. Since the EHR_STATUS
object is separate from the EHR contents, the root instance of PARTY_SELF will generally
not be visible.
Date of Issue: 08 Apr 2007 Page 30 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Generic Package
Rev 2.1.0
• Setting the external_ref in every instance of PARTY_SELF; this solution makes the patient
external_ref visible in every instance of PARTY_SELF, which is reasonable in a secure envi-
ronment, and convenient for copying parts of the record around locally.

All three schemes are supported by the openEHR model, and will probably all find use in different
settings and EHR deployment types.

4.2.2 Participation
The Participation abstraction models the interaction of some Party in an activity. In the openEHR ref-
erence models, participations are actually modelled in two ways. In situations where the kinds of par-
ticipation are known and constant, they are modelled as a named attribute in the relevant reference
model. For example, the committer: PARTY_PROXY attribute in AUDIT_DETAILS models a participa-
tion in which the function is “committal”. Where the kind of participation is not known at design
time, the generic PARTICIPATION class is used. This class refers to a Party via a PARTY_PROXY inst-
sance, and records the function, time interval and (coded) mode of the participation. It can be used in
any other openEHR information model as required.

4.2.3 Audit Information
Audit Details
Three classes are provided to represent audit information. The first, AUDIT_DETAILS expresses the
details that would be captured about a user when committing some information to a repository of
some kind, which may be version controlled. It records committer, time, change type and description.
Committer is recorded using a PARTY_PROXY, allowing for PARTY_SELF to be used when the com-
mitter is the record subject, and for other identifying information to be included for other users,
expressed using PARTY_IDENTIFIED. The kind of identifying information used in PARTY_PROXY
instances in AUDIT_DETAILS may be different from that used in COMPOSITION.composer or else-
where, i.e. in the form of a system login identifier, e.g. “maxime.lavache@stpatricks.health.ie”.

Revision History
The classes REVISION_HISTORY and REVISION_HISTORY_ITEM express the notion of a revision
history, which consists of audit items, each associated with a revision number. An instance of the
REVISION_HISTORY_ITEM class is designed to express the information that corresponds to an item
in a revision history, i.e. a list of all audits relating to some information item. The version_id is
included to indicate which revision each audit corresponds to. These classes provide an interoperable
definition of revision history for the VERSIONED_OBJECT and AUTHORED_RESOURCE classes.

4.2.4 Attestation
Attestation is another concept which occurs commonly in health information. An attestation is an
explicit signing by one healthcare agent of particular content for various particular purposes, includ-
ing:

• for authorisation of a controlled substance or procedure (e.g. sectioning of patient under
mental health act);

• witnessing of content by senior clinical professional;
• indicating acknowledgement of content by intended recipient, e.g. GP who ordered a test

result.

Here it is modelled as a subtype of AUDIT_DETAILS, meaning that it is logically a kind of audit, with
additional information pertinant to the act of signing. The contents of an ATTESTATION are as fol-
lows:
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 31 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Generic Package Common Information Model
Rev 2.1.0
• the identity of the attesting party (AUDIT_DETAILS.committer);
• the date and time of the action of attestation (AUDIT_DETAILS.time_committed);
• references to items in the record being attested to (ATTESTATION.items); if this list is

empty, the attestation is for the entire object (usually the content of an
ORIGINAL_VERSION) to which the attestation is attached, otherwise the list must contain a
set of paths to items within the item to which the attestation is attached;

• an optionally coded reason for attestation (ATTESTATION.reason);
• an optional literal view of the the content attested, e.g. a binary screen image;
• a proof of attestation in the form of a digital signature by the attesting party.

The digital signature, if present, is generated using the IETF RFC 2440 (openPGP)1 standard as,
according to the process shown in FIGURE 5.

In this process, the attestation object is serialised into a canonical text form, and then hashed to create
a digest. A digital signature is created from the hash, using the user’s private key. The result is then
radix-64 encoded to create an ASCII string so as to remove or reduce potential problems with subse-
quent communication. The openPGP standard ensures that the transformations and algorithms used to
create the signature are indicated within it (i.e. the signature is self-describing).

The serialisation process works by the simple rule of serialising the entire Attestation object (note that
the proof attribute will be Void at this point) into an agreed XML, dADL or other text format, then
applying the subsequent transformations to the serialised data, then writing the digest result back into
the proof attribute.

To Be Determined: The exact serialisation is not yet defined by
openEHR, but dADL might be preferred since it
has an unambiguous encoding of object struc-

1. See http://www.ietf.org/rfc/rfc2440.txt

FIGURE 5 Attestation signature generation (using openPGP)

Digest
Encrypt Signature

112647565637224

attester’s private key

radix-64
ASCII

encode

Signature
(ASCII)system_id = xxx

time_committed =

ATTESTATION

change_type = xx
description = xxx
items = <xxx>
reason = xxx
is_pending = xx
proof = “xxxxx”

attested_view

name = xxx
identifiers = <xx, yy>

PARTY_IDENTIFIED

external_ref = xxxx

committer

system_id = xxx
time_committed =

ATTESTATION

change_type = xx
description = xxx
items = <xxx>
reason = xxx
is_pending = xx
proof = (Void)

canonical
serialiser

xxxx=<>
yyyy= <

zzz=<“wdifwbdfiwdufw”>
ww=<1992-04-12T12:01:00>

aaa= <fwefub>
bb=<“*J&h5g8biB9i8h”>
ccc=<

ddd=<
eee=<124>
fff=<“wdfiubwiefug”>

>
>

canonical
serialised form

data = xxx
uri = xxx

DV_MULTIMEDIA

media_type = xxxx

Hash
(e.g. MD5)
Date of Issue: 08 Apr 2007 Page 32 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

http://www.ietf.org/rfc/rfc2440.txt

Common Information Model Generic Package
Rev 2.1.0
tures, whereas XML libraries generate different
XML from the same objects.

Normally the list of items being attested should be a single Entry or Composition, but there is nothing
stopping it including fine-grained items, even though separate attestation of such items does not
appear to be commensurate with good clinical information design or process.

The reason attribute is used to indicate why the attestation occurred, and is coded using the openEHR
Terminology group “attestation reason”, which includes values such as “authorisation” and “wit-
nessed”. The is_pending attribute marks the attestation as either having been done or awaiting com-
pletion depending on its value. This facilitates querying the record to find items needing to be signed
or witnessed. When an attestation is required, the most common scenario will be that a Composition
Version will be committed with a commit_audit of type ATTESTATION, rather than just
AUDIT_DETAILS; the is_pending flag will be set to True to indicate that the committed information
needs to be signed by another person. When signing occurs, it will cause a new ATTESTATION object
to be added to the VERSION.attestations list, this time with is_pending set to False, and the appropri-
ate proof supplied. Thus, the common situation in which content is committed to the record and needs
later review and signing by a senior person will cause the creation of two ATTESTATION objects.

4.3 Class Descriptions

4.3.1 PARTY_PROXY Class

4.3.2 PARTY_SELF Class

CLASS PARTY_PROXY (abstract)

Purpose
Abstract concept of a proxy description of a party, including an optional link to
data for this party in a demographic or other identity management system. Sub-
typed into PARTY_IDENTIFIED and PARTY_SELF.

Attributes Signature Meaning

0..1
external_ref: PARTY_REF Optional reference to more detailed demo-

graphic or identification information for this
party, in an external system.

Invariant

CLASS PARTY_SELF

Purpose Party proxy representing the subject of the record.

Use Used to indicate that the party is the owner of the record. May or may not have
external_ref set.

Inherit PARTY_PROXY

Attributes Signature Meaning
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 33 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Generic Package Common Information Model
Rev 2.1.0
4.3.3 PARTY_IDENTIFIED Class

4.3.4 PARTY_RELATED Class

Invariant

CLASS PARTY_IDENTIFIED

Purpose

Proxy data for an identified party other than the subject of the record, minimally
consisting of human-readable identifier(s), such as name, formal (and possibly
computable) identifiers such as NHS number, and an optional link to external
data. There must be at least one of name, identifier or external_ref present.

Use
Used to describe parties where only identifiers may be known, and there is no
entry at all in the demographic system (or even no demographic system). Typi-
cally for health care providers, e.g. name and provider number of an institution.

Misuse Should not be used to include patient identifying information.

Inherit PARTY_PROXY

Attributes Signature Meaning

0..1
(cond)

name: String Optional human-readable name (in String
form).

0..1
(cond)

identifiers:
List<DV_IDENTIFIER>

One or more formal identifiers (possibly
computable).

Invariant
Basic_valid name /= Void or identifiers /= Void or external_ref /= Void
Name_valid: name /= Void implies not name.is_empty
Identifiers_valid: identifiers /= Void implies not identifiers.is_empty

CLASS PARTY_RELATED

Purpose Proxy type for identifying a party and its relationship to the subject of the record.

Use Use where the relationship between the party and the subject of the record must
be known.

Inherit PARTY_IDENTIFIED

Attributes Signature Meaning

CLASS PARTY_SELF
Date of Issue: 08 Apr 2007 Page 34 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Generic Package
Rev 2.1.0
4.3.5 PARTICIPATION Class

1..1

relationship: DV_CODED_TEXT Relationship of subject of this ENTRY
to the subject of the record. May be
coded. If it is the patient, coded as
“self”.

Invariants

Relationship_valid: relationship /= Void and then
terminology(Terminology_id_openehr).
has_code_for_group_id(Group_id_subject_relationship, relation-
ship.defining_code)

CLASS PARTICIPATION

Purpose Model of a participation of a Party (any Actor or Role) in an activity.

Use
Used to represent any participation of a Party in some activity, which is not
explicitly in the model, e.g. assisting nurse. Can be used to record past or future
participations.

Misuse Should not be used in place of more permanent relationships between demo-
graphic entities.

HL7v3 RIM Participation class.

Attributes Signature Meaning

1..1 performer: PARTY_PROXY The id and possibly demographic system link of
the party participating in the activity.

1..1

function: DV_TEXT The function of the Party in this participation (note
that a given party might participate in more than
one way in a particular activity). This attribute
should be coded, but cannot be limited to the
HL7v3:ParticipationFunction vocabulary, since it
is too limited and hospital-oriented.

1..1 mode: DV_CODED_TEXT The mode of the performer / activity interaction,
e.g. present, by telephone, by email etc.

0..1

time: DV_INTERVAL
<DV_DATE_TIME>

The time interval during which the participation
took place, if it is used in an observational context
(i.e. recording facts about the past); or the intended
time interval of the participation when used in
future contexts, such as EHR Instructions.

CLASS PARTY_RELATED
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 35 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Generic Package Common Information Model
Rev 2.1.0
4.3.6 AUDIT_DETAILS Class

Invariant

Performer_valid: performer /= Void
Function_valid: function /= Void and then
function.generating_type.is_equal(“DV_CODED_TEXT”) implies
terminology(Terminology_id_openehr).
has_code_for_group_id(Group_id_participation_function, func-
tion.defining_code)
Mode_valid: mode /= Void and terminology(Terminology_id_openehr).
has_code_for_group_id(Group_id_participation_mode, mode.defining_code)

CLASS AUDIT_DETAILS

Purpose The set of attributes required to document the committal of an information item to
a repository.

Synapses Composition class

GEHR G1_COMMIT_AUDIT

Attributes Signature Meaning

1..1

system_id: String Identity of the system where the change was
committed. Ideally this is a machine- and
human-processable identifier, but it may not
be.

1..1
committer: PARTY_PROXY Identity and optional reference into identity

management service, of user who committed
the item.

1..1 time_committed:
DV_DATE_TIME

Time of committal of the item.

1..1 change_type:
DV_CODED_TEXT

Type of change. Coded using the openEHR
Terminology “audit change type” group.

0..1 description: DV_TEXT Reason for committal.

Invariants

System_id_valid: system_id /= Void and then not system_id.is_empty
Committer_valid: committer /= Void
Time_committed_valid: time_committed /= Void
Change_type_valid: change_type /= Void and then
terminology(Terminology_id_openehr).
has_code_for_group_id(Group_id_audit_change_type,
change_type.defining_code)

CLASS PARTICIPATION
Date of Issue: 08 Apr 2007 Page 36 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Generic Package
Rev 2.1.0
4.3.7 ATTESTATION Class

4.3.8 REVISION_HISTORY Class

CLASS ATTESTATION

Purpose Record an attestation of a party (the committer) to item(s) of record content. The
type of attestation is

Inherit AUDIT_DETAILS

Attributes Signature Meaning

0..1 attested_view:
DV_MULTIMEDIA

Optional visual representation of content
attested e.g. screen image.

0..1 proof: String Proof of attestation.

0..1

items: Set <DV_EHR_URI> Items attested, expressed as fully qualified
runtime paths to the items in question.
Although not recommended, these may
include fine-grained items which have been
attested in some other system. Otherwise it is
assumed to be for the entire VERSION with
which it is associated.

1..1

reason: DV_TEXT Reason of this attestation. Optionally coded
by the openEHR Terminology group “attesta-
tion reason”; includes values like “authorisa-
tion”, “witness” etc.

1..1 is_pending: Boolean True if this attestation is outstanding; False
means it has been completed.

Invariants

Items_valid: items /= Void implies not items.is_empty
Reason_valid: reason /= Void and then (rea-
son.generating_type.is_equal(“DV_CODED_TEXT”) implies terminol-
ogy(Terminology_id_openehr).has_code_for_group_id(Group_id_attestation_rea
son, reason.defining_code))

CLASS REVISION_HISTORY

Purpose Defines the notion of a revision history of audit items, each associated with the
version for which that audit was committed. The list is in most-recent-first order.

Attributes Signature Meaning

1..1 items: List
<REVISION_HISTORY_ITEM>

The items in this history in most-recent-last
order.

Function Signature Meaning
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 37 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Generic Package Common Information Model
Rev 2.1.0
4.3.9 REVISION_HISTORY_ITEM Class

most_recent_version: String
ensure
Result.is_equal
(items.last.version_id.value)

The version id of the most recent item, as a
String.

most_recent_version_time_co
mmitted: String
ensure
Result.is_equal
(items.last.audits.first.
time_committed.value)

The commit date/time of the most recent item,
as a String.

Invariants Items_valid: items /= Void

CLASS REVISION_HISTORY_ITEM

Purpose
An entry in a revision history, corresponding to a version from a versioned con-
tainer. Consists of AUDIT_DETAILS instances with revision identifier of the revi-
sion to which the AUDIT_DETAILS intance belongs.

Attributes Signature Meaning

1..1

audits:
List<AUDIT_DETAILS>

The audits for this revision; there will always
be at least one commit audit (which may itself
be an ATTESTATION), there may also be fur-
ther attestations.

1..1 version_id:
OBJECT_VERSION_ID

Version identifier for this revision.

Invariants Audit_valid: audits /= Void and then not audits.is_empty
Version_id_valid: version_id /= Void

CLASS REVISION_HISTORY
Date of Issue: 08 Apr 2007 Page 38 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Directory Package
Rev 2.1.0
5 Directory Package

5.1 Overview
The directory package is illustrated in FIGURE 6. It provides a simple abstraction of a versioned
folder structure. The VERSIONED_FOLDER class is the binding of VERSIONED_OBJECT<T> to the
class FOLDER, i.e. it is a VERSIONED_OBJECT<FOLDER>. This means that each of its versions is a
Folder structure rather than a single Folder. It provides a means of versioning FOLDER structures over
time, which is useful in the EHR, Demographics service or anywhere else where Folders are used to
group things. A FOLDER instance contains more FOLDERs and/or items, which are references to other
(usually versioned) objects. A FOLDER structure is therefore like a directory containing references to
objects. Since they are references, multiple references to the same object are possible, allowing the
structure to be used to mutiply classify other objects. If it is used with VERSIONED_COMPOSITIONs
for example, the folders might be used to represent episodes and at the same time problem groups.

FOLDER structures inside the VERSIONED_FOLDER are archetypable structures, and FOLDER arche-
types can be created in the same fashion as say SECTION archetypes for the EHR.

5.1.1 Paths
Directory paths are built using the name attribute values inherited from LOCATABLE into each
FOLDER object. In real data, these will usually be derived from the value of the archetype_node_id
attribute, plus a uniqueness modifier if required. Example paths (e.g. within the EHR):

/folders[hospital episodes]/items[1]
/folders[patient entered data]/folders[diabetes monitoring]
/folders[homeopathy contacts]

Uniqueness modifiers are appended in brackets, and are only needed to differentiate folders at the
same node that would otherwise have the same names, e.g.

[hospital episodes]
[hospital episodes(car accident Aug 1998)]

FOLDER
items[0..1]: List<OBJECT_REF>

FIGURE 6 common.directory Package

folders

directory

0..*
VERSIONED_FOLDER

<<bind>>
<FOLDER>

(rm.common.change_control)
VERSIONED_OBJECT<T>

(rm.common.archetyped)
LOCATABLE
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 39 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Directory Package Common Information Model
Rev 2.1.0
5.2 Class Descriptions

5.2.1 VERSIONED_FOLDER Class

5.2.2 FOLDER Class

CLASS VERSIONED_FOLDER

Purpose A version-controlled hierarchy of FOLDERs giving the effect of a directory.

Inherit VERSIONED_OBJECT <FOLDER>

Attributes Signature Meaning

Invariants

CLASS FOLDER

Purpose The concept of a named folder.

CEN FOLDER class

Synapses RecordFolder class

Inherit LOCATABLE

Attributes Signature Meaning

0..1 folders: List<FOLDER> Sub-folders of this FOLDER.

0..1 items: List<OBJECT_REF> The list of references to other (usually) ver-
sioned objects logically in this folder.

Invariants Folders_valid: folders /= Void implies not folders.is_empty
Date of Issue: 08 Apr 2007 Page 40 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Change Control Package
Rev 2.1.0
6 Change Control Package

6.1 Overview
As described in the Architecture Overview document, formal version control and change manage-
ment are used in openEHR to support the construction of EHR and other repositories requiring the
properties of consistency, indelibility, traceability and distributed sharing. The change_control
package supplies the formal specification of these features in openEHR.

FIGURE 7 illustrates the openEHR model of a Versioned object, and its constituent Versions. In this
model, an instance of the class VERSIONED_OBJECT<T> provides the versioning facilities for one
versioned item and is often referred to as a ‘version container’. Although any kind of data can be ver-
sioned according to the model presented here, the use of versioning in openEHR is limited to ‘top-
level structures’, such as EHR Compositions and Party objects in a demographic system.

FIGURE 7 rm.common.change_control Package

change_control

VERSIONED_OBJECT<T>
uid[1]: HIER_OBJECT_ID
owner_id[1]: OBJECT_REF
time_created[1]: DV_DATE_TIME
version_count: Integer
all_version_ids: List <OBJECT_VERSION_ID>
all_versions: List <VERSION<T>>
has_version_at_time (a_time: DV_DATE_TIME):
Boolean
has_version_id (a_ver_id: OBJECT_VERSION_ID):
Boolean
version_with_id (a_ver_id: OBJECT_VERSION_ID):
VERSION<T>
is_original_version (a_ver_id:
OBJECT_VERSION_ID): Boolean
version_at_time (a_time: DV_DATE_TIME):
VERSION<T>
revision_history: REVISION_HISTORY
latest_version: VERSION<T>
latest_trunk_version: VERSION<T>
trunk_lifecycle_state: DV_CODED_TEXT
commit_original_version (...)
commit_original_merged_version (...)
commit_imported_version (...)
commit_attestation (an_audit: ...)

ORIGINAL_VERSION<T>
uid[1]: OBJECT_VERSION_ID
preceding_version_uid[0..1]:
OBJECT_VERSION_ID
other_input_version_uids[0..1]:
Set<OBJECT_VERSION_ID>
lifecycle_state[1]: DV_CODED_TEXT
is_merged: Boolean

commit_

T

attestations

0..*

audit
1

CONTRIBUTION
uid[1]: HIER_OBJECT_ID
versions[1]: Set<OBJECT_REF>

data
0..1

coded by openEHR
Terminology, group
“version lifecycle

IMPORTED_VERSION<T>

uid: OBJECT_VERSION_ID
preceding_version_uid:
OBJECT_VERSION_ID
data: T
lifecycle_state: DV_CODED_TEXT

(rm.common.generic)
AUDIT_DETAILS

(rm.common.generic)
ATTESTATION

audit

VERSION<T>
contribution[1]: OBJECT_REF
signature[0..1]: String
uid: OBJECT_VERSION_ID
preceding_version_uid:
OBJECT_VERSION_ID
data: T
lifecycle_state: DV_CODED_TEXT
canonical_form: String
owner_id: HIER_OBJECT_ID
is_branch: Boolean

1

state”

item
1

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 41 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Change Control Package Common Information Model
Rev 2.1.0
FIGURE 8 illustrates a single VERSIONED_OBJECT containing a number of VERSIONs. Although
the figure implies physical containment of Versions by a Versioned object, this is only one possible
implementation. Other implementations (e.g. using orthodox relational structures) might use refer-
ences, separate compressed copies, or any other mechanism.

6.2 Basic Semantics

6.2.1 Typing
The classes VERSIONED_OBJECT<T>, VERSION<T>, ORIGINAL_VERSION<T> and
IMPORTED_VERSION<T> are generic classes, with the generic parameter type T being the type of
the data. This ensures that all versions in a given VERSIONED_OBJECT are of the same type, such as
COMPOSITION, FOLDER, or PARTY and that the version container itself is properly typed.

6.2.2 Versioned Objects
Each VERSIONED_OBJECT has a unique identifier recorded in the uid attribute (a HIER_OBJECT_ID
typically containing a GUID), and a reference to the owning object (e.g. the owning EHR) in the
owner_id attribute (this is typically also a GUID). The latter helps ensure that in storage systems, Ver-
sioned objects are always correctly allocated to their enclosing repository, such as an EHR.

The data in a VERSIONED_OBJECT are in the form of a collection of instances of the two VER-
SION<T> subtypes, and are available only via the functional interface of VERSIONED_OBJECT. How
the representation of this collection is implemented inside the VERSIONED_OBJECT is not defined by
this specification, only the form of any given Version is. Implementations of VERSIONED_OBJECT
might range from the simple (all versions stored as full copies in a list) to a sophisticated compressed
versioning approach as used in software file version control and some object databases. (The persist-
ent data format of implementations of VERSIONED_OBJECT developed by different organisations
will in general be incompatible. For purposes of sharing, an interoperable expression of
VERSIONED_OBJECT is defined by the X_VERSIONED_OBJECT class in the EHR Extract IM.)

6.2.3 Version and its Subtypes
Within a Versioned object, each version is an instance of a subtype of the class VERSION<T>. The
abstract VERSION class defines the generic notion of a version containing some data, that has been
committed to the repository as a member of a Contribution. Accordingly, it records the Contribution
in the contribution attribute and the audit in commit_audit. A Version also knows its position in the
version tree within the container. It has a version identifier, uid, and knows on which version in the
tree it was based (i.e. what version was “checked out” to create the current version),

FIGURE 8 Version-control structures
Version container

VERSIONED_OBJECT<T>

Versions

a single Version

top-level
content
structure

audit trail

VERSION<T>
Date of Issue: 08 Apr 2007 Page 42 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Change Control Package
Rev 2.1.0
preceding_version_id (Void if it is the first version). Both of these identifiers are globally unique (see
support.identification package). These properties are abstract in the VERSION class, since
they are defined as being stored or computed respectively in its subtypes.

All Versions in a given version container have a uid that includes the uid of the container; in other
words, the uid of a Version is its container’s uid plus further version identification for that particular
version with respect to others in the same container. The VERSION.owner_id function extracts the uid
of the owning VERSIONED_OBJECT from the uid of the VERSION.

The VERSION class has two subtypes. The first, ORIGINAL_VERSION<T>, represents a Version cre-
ated with original content (stored form of data property) at the time of creation (including from non-
openEHR local feeder systems), and potentially attested (signed). It includes as attributes the current
version (uid) and the preceding version (preceding_version_uid). It also knows the lifecycle state of
its content. If it was the result of a merge (see Version Merging on page 52) of versions other than the
preceding version, the identifiers of these versions will be recorded in the attribute
other_input_version_uids. All instances of VERSION<T> in non-distributed openEHR systems will
be instances of ORIGINAL_VERSION<T>. The ORIGINAL_VERSION is also the unit of copying in a
distributed environment.

The second subtype is IMPORTED_VERSION<T>, and acts as a wrapper of an
ORIGINAL_VERSION<T>. It has its own contribution and commit_audit (inherited from VER-
SION<T>), and contains the original version being imported in its item attribute. Its uid and
preceding_version are defined as functions, returning the corresponding attribute values from the
wrapped ORIGINAL_VERSION object (in other words, an IMPORTED_VERSION does not have its
own version identifier distinct from the version it is wrapping). The semantics of importing are
described below in Copying on page 50. FIGURE 9 illustrates typical arrangements of
ORIGINAL_VERSION and IMPORTED_VERSION objects within VERSIONED_OBJECTs, in turn
within an EHR (if this is an EHR system), ultimately within an identified system. The two
VERSIONED_OBJECTs are shown representing “medications” and “problem list”, to give some idea
of correspondence of versioning structures to logical data. Star icons represent digital signatures.

FIGURE 9 Instance view of versioned data

VERSIONED_OBJECT<T>

uid =1 - “medications”

dataIMP
VER

ORIG
VER

uid =2 - “problem list”

system A

VERSIONED_OBJECT<T>

EHR 111

audit audit

data

data

dataIMP
VER

ORIG
VER

IMP
VER

ORIG
VER

IMP
VER

ORIG
VER

dataIMP
VER

ORIG
VER

audit audit

audit

audit

audit

audit

audit

auditdata ORIG
VER

audit

data ORIG
VER

audit

data ORIG
VER

audit

data ORIG
VER

audit
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 43 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Change Control Package Common Information Model
Rev 2.1.0
6.2.4 The “Virtual Version Tree”
An underlying design concept of the versioning model defined here is known as the ‘virtual version
tree’. The idea is simple in the abstract. Information is committed to a repository (such as an EHR) in
lumps, each lump being the ‘data’ of one Version. Each Version has its place within a version tree,
which in turn is maintained inside a Versioned object. The virtual version tree concept means that any
given Versioned object may have numerous copies in various systems, and that the creation of ver-
sions in each is done in such a way that all versions so created are in fact compatible with the ‘virtual’
version tree resulting from the superimposition of the version trees of all copies. This is achieved
using simple rules for version identification, described below, and is done to facilitate data sharing.
Two very common scenarios are served by the virtual version tree concept:

• longitudinal data that stands as a proxy for the state or situation of the patient such as “Med-
ications” or “Problem list” (persistent Compositions in openEHR) is created and maintained
in one or more care delivery organisations, and shared across a larger number of organisa-
tions;

• some EHRs in an EHR server in one location are mirrored into one or more other EHR serv-
ers (e.g. at care providers where the relevant patients are also treated); the mirroring process
requires asynchronous synchronisation between servers to work seamlessly, regardless of
the location, time, or author of any data created.

The uid attribute of the class VERSIONED_OBJECT<T> is in fact the uid of the virtual version tree for
a given logical item (such as the “problem list” of a certain patient) - that is to say, the uid will be the
same in all copies of the same Versioned object in a distributed system.

The versioning scheme used in openEHR guarantees that no matter where data are created or copied,
there are no inconsistencies due to sharing, and that logical copies are explicitly represented. This is
achieved by the design of Version identifiers.

6.2.5 Contributions
Since a versioned repository (i.e. a collection of VERSIONED_OBJECTs) is by definition indelible, all
logical changes including deletions, additions, modifications (including error corrections and content
changes), importing and attestations of existing items, are achieved by physically committing new
Versions, or for attestations, new Attestation objects to existing Versions. Each logical type of change
is achieved as follows:

• addition of new item: a new VERSIONED_OBJECT is created with a first
ORIGINAL_VERSION whose data is the new item; the
ORIGINAL_VERSION.commit_audit.change_type is set to the code for ‘creation’

• deletion of existing item: a new ORIGINAL_VERSION whose data attribute is set to Void is
added to an existing VERSIONED_OBJECT; the
ORIGINAL_VERSION.commit_audit.change_type is set to the code for ‘deleted’;

• modification of existing item: a new ORIGINAL_VERSION whose data contains the updated
form of the item content is added to an existing VERSIONED_OBJECT;

- if the change is logically a correction (e.g. of wrongly entered data), the
ORIGINAL_VERSION.commit_audit.change_type is set to the code for
‘amendment’;

- if the change is logically a change, addition etc to the content, the
ORIGINAL_VERSION.commit_audit.change_type is set to the code for
‘modification’;
Date of Issue: 08 Apr 2007 Page 44 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Change Control Package
Rev 2.1.0
• import of item: a new IMPORTED_VERSION is created, incorporating the received
ORIGINAL_VERSION; the IMPORTED_VERSION.commit_audit.change_type is set to the
code for ‘creation’.

• attestation of item: a new ATTESTATION is added to the attestations list of an existing
ORIGINAL_VERSION; the ATTESTATION.commit_audit.change_type is set to the code for
‘attestation’.

In a typical application situation, one or more of the above changes may be committed to a repository
as a Contribution. For example during a patient encounter, the following might occur:

• addition: a new Composition is created recording the Observations (e.g. physical examina-
tion), etc that are made during the Encounter;

• modification: the Composition containing the current medications list is updated, due to a
prescription being given during the encounter.

These two changes together constitute a logical ‘change-set’, and would typically be included in the
one Contribution. In general, there might be any combination of the logical change types in a single
commit by an application, corresponding to a single real-world business event, such as a GP Encoun-
ter, although attestations, deletions and corrections will usually be the only change within a Contribu-
tion. In every case, regardless of the combination, a CONTRIBUTION object will be created, listing the
affected VERSION objects, and including its own audit object.

The list of all Contribution objects for a version repository (such as an EHR) provides a complete his-
tory of the change-sets made to the repository and is the basis for performing ‘rollback’ to access pre-
vious informational states of the EHR. Conversely, each Version object contains a reference to the
Contribution that caused it to be created.

6.2.6 Committal and Audits
Audits are recorded in the form of instances of the class AUDIT_DETAILS (common.generic pack-
age), which defines a set of attributes which form an audit trail, namely system_id, committer,
time_committed, change_type, and description or its subtype ATTESTATION, which adds a number of
other attributes (see below). When an ORIGINAL_VERSION instance is created locally, the
commit_audit attribute contains an audit object recording the local act of committal.

However, if the Version being committed does not correspond to local data creation, but instead con-
tains a copy of an ORIGINAL_VERSION originally created and commited elsewhere, it is committed
locally as an instance of the IMPORTED_VERSION class. Both the contribution and commit_audit of
the latter object correspond to the local act of committal, while the knowledge of the original Contri-
bution and committal are retained inside the wrapped ORIGINAL_VERSION instance. Original ver-
sions can be copied any number of times; in each system into which they are imported, an
IMPORTED_VERSION is created as a wrapper.

This simple scheme ensures that the audit from initial creation - which is the clinically meaningful
audit - is preserved no matter how many times the Version is copied to other systems; it also ensures
that from the point of view of the version container, the local commit audit and Contribution always
correspond to the local act of committal.

The CONTRIBUTION class also contains an audit attribute. Whenever a CONTRIBUTION is commit-
ted, this attribute captures to the time, place and committer of the committal act; these three attributes
(system_id, committer, time_committed of AUDIT_DETAILS) should be copied into the corresponding
attributes of the commit_audit of each VERSION included in the CONTRIBUTION. This is done to ena-
ble sharing of versioned entities independently of which Contributions they were part of.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 45 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Change Control Package Common Information Model
Rev 2.1.0
The time_committed attribute in both the Contribution and Version audits should reflect the time of
committal to an EHR server, i.e. the time of availability to other users in the same system. It should
therefore be computed on the server in implementations where the data are created in a separate client
context.

In terms of database management, Contributions are similar to nested transactions. An attempt to
commit a Contribution should only succeed if each Version and/or Attestation in the Contribution is
committed successfully.

6.2.7 Digital Signature
At the time of committal of a Version, a digital signature of the object can be made. In this process, a
Version object (an ORIGINAL_VERSION or IMPORTED_VERSION) is serialised into canonical form
which is then hashed to produce a digest. If public key or equivalent infrastructure is in place so that
users are able to sign content, a digital signature can be created from the hash, using the user’s private
key. Either way, the result is then radix-64 encoded to create an ASCII string so as to remove or
reduce potential problems with subsequent communication. The openPGP standard ensures that the
trasformations and algorithms used to create the signature are indicated within it.

The signature can serve two purposes. If only the hashing step is done, the digest acts as a data integ-
rity check, indicating if the data have been tampered with after creation. If the signing step is carried
out, it authenticates the user as the author of the content to readers of the content. In a versioned EHR
system, it also acts as a non-repudiation measure, since the signature is stored permanently with the
data. To circumvent hacking of the data, public notarisation of the signature can be used. The signa-
ture, if present, is generated according to the IETF RFC 2440 (openPGP)1 standard, following the
process shown in FIGURE 10.

1. See http://www.ietf.org/internet-drafts/draft-ietf-openpgp-rfc2440bis-18.txt

uid = xxxx
preceding_version_uid
lifecycle_state = xxx
owner_id = xxx

FIGURE 10 Version Signature (using openPGP)

Hash
(e.g. MD5) Digest

ORIGINAL_VERSION

content =
context =

COMPOSITION

system_id = xxx
time_committed =

AUDIT_DETAILS

change_type = xx
description = xxx

signature = (Void)
canonical
serialiser

xxxx=<>
yyyy= <

zzz=<“wdifwbdfiwdufw”>
ww=<1992-04-12T12:01:00>

aaa= <fwefub>
bb=<“*J&h5g8biB9i8h”>
ccc=<

ddd=<
eee=<124>
fff=<“wdfiubwiefug”>

>
>

uid = xxxx
preceding_version_uid
lifecycle_state = xxx
owner_id = xxx

ORIGINAL_VERSION

signature = “xxxx”

name = xxx
identifiers = <xx, yy>

PARTY_IDENTIFIED

external_ref = xxxx

data

committer

commit_
audit

radix-64
ASCII

encode

Signature
(ASCII)

canonical

Signature

112647565637224

serialised form

Encrypt
(e.g. RSA)

user’s private key

+

or

object form

(optional steps)
Date of Issue: 08 Apr 2007 Page 46 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

http://www.ietf.org/internet-drafts/draft-ietf-openpgp-rfc2440bis-18.txt
http://www.ietf.org/internet-drafts/draft-ietf-openpgp-rfc2440bis-18.txt

Common Information Model Change Control Package
Rev 2.1.0
The serialisation process works by the simple rule of serialising the entire Version object (note that
the signature attribute will be Void at this point) into an agreed XML, dADL or other text format, then
applying the subsequent transformations to the serialised data, then writing the digest result back into
the signature attribute. If the object to be serialised is an IMPORTED_VERSION, the process is the
same - all attributes of the object are serialised and then used to generate a signature. The result will
be that the IMPORTED_VERSION instance will carry its own signature which signifies the act of
importing and making available locally an ORIGINAL_VERSION from another system.

To Be Determined: The exact serialisation is not yet defined by
openEHR, but dADL might be preferred since it has an unam-
biguous encoding of object structures, whereas different
XML libraries can generate different XML from the same
objects.

It should be noted that the signing process here creates a signature of a logical form of the content, not
a particular graphical or other directly human interpretable view. Usually the relationship between the
data and what is seen on the screen is assumed to be 1:1 in a reliable system. If however the equiva-
lent of a signature of a screen image or other literal form of the data are needed, then the Attestation
form of the commit_audit is needed. This is described below.

One of the most important uses of signatures in openEHR data is likely to be within EHR Extracts,
since they can provide an assurance authenticity and integrity of the data to a receiver who has no
knowledge of the quality of the processes used in the originating system.

The signing computation has to be performed on the server side of a system, just prior to committal,
since one of the data elements included in the signed content is the committal timestamp.

6.2.8 Attestation
The ORIGINAL_VERSION.attestations attribute allows attestations to be associated with the data in
an original version. Attestations are treated in openEHR as a kind of audit with additional attributes,
and are described in detail in the common.generic package section of the Common IM. Any
number of attestations to be associated with each Version in a Versioned object. Attestations can be
added at any time after committal of the content being attested. They can be used as required by enter-
prise processes or legislation, and indicate by whom and when the item in question was attested. A
digital “proof” is also required, although no assumption is made about the form of such proof.

Attestations may be used in different ways as follows.

• Signing content at committal: for some reason, the information being committed needs to be
digitally signed. It may be that sensitive information is to be added to the EHR, e.g. record-
ing the fact of sectioning of a patient under the mental health act, diagnosis of a fatal disease
etc, or simply something which the user wants to sign. In this case,
ORIGINAL_VERSION.commit_audit is of type ATTESTATION rather than
AUDIT_DETAILS.

• Marking content for review and signing: data entered and committed by a data-entry person
e.g. a secretary, transcriptionist or student need to be reviewed and signed by a senior clini-
cian. Similarly to the above case, this will cause ORIGINAL_VERSION.commit_audit to be
of type ATTESTATION, but in this case, the Attestation will have its is_pending flag set True
to indicate that attestation is required.

• Post-committal signing: data committed with an Attestation in the is_pending state is
reviewed and signed at a later point in tme by an appropriate member of staff. This action
will cause an ATTESTATION to be added to the ORIGINAL_VERSION.attestations list.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 47 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Change Control Package Common Information Model
Rev 2.1.0
Normally, Attestations refer to the entire version to which they are attached. However, it is possible
for an ATTESTATION instance to refer to some finer-grained item within the data of the version, such
as a single ENTRY within a COMPOSITION.

When subsequent Versions are added, the existing Attestations can not be assumed to be valid for the
new Version, since the nature of an attestation is that it records the witnessing of exactly the content
displayed at the time of witnessing.

6.3 Versioning Semantics

6.3.1 Version Lifecycle
Content in Original versions has a lifecycle state associated with it, modelled using the
ORIGINAL_VERSION.lifecycle_state attribute, which is coded from the openEHR Terminology “ver-
sion lifecycle state” group. The possible values are “complete”, “incomplete” and “deleted”. Usually
content will be committed in the “complete” state. However, in some circumstances, e.g. because the
author has run out of time or due to an emergency, it may be committed as “incomplete” meaning that
it is either incomplete or at least unreviewed. In hospitals this is a common occurrence. Unfinished
Compositions cannot be saved locally on the client machine, since this represents a security risk (a
small client-side database would be much easier to hack into than a secure server). They must there-
fore be persisted on the server, either in the actual EHR, or in a 'holding bay' which was recognised as
not being part of the EHR proper. Either way, the author would have to explicitly retrieve the Compo-
sition(s) and after further work or review, 'promote' them into the EHR as 'active' Compositions; alter-
natively, they might decide to throw them away.

Going from “incomplete” to “complete” almost always corresponds to a change in content, and corre-
sponds to a new VERSION regardless. This modelling approach allows such content to exist on the
EHR system, but to be flagged as incomplete when viewed by a user.

Systems are responsible for implementing checks to find ‘old’ Versions in “incomplete” state, and
bring them to the relevant user’s notice, or automatically deleting them or progressing them to “com-
plete” as appropriate.

6.3.2 Logical Deletion
Within the lifecycle described above, deletion of existing top-level content items (i.e. the entire data
contents of a Version) is somewhat of a special case in openEHR and in EHRs in general. Medico-
legal and traceability requirements mean that information cannot be literally removed, since it must
always be possible to revert back to a previous state of the record in which the deleted information is
intact. Accordingly, information can only ever be logically deleted. This is achieved by the following
procedure in the Version container in question:

• create a new Version in the normal way;
• delete its data (which will by default be a copy of the data of the previous Version);
• set the lifecycle_state value to the code for “deleted”
• commit in the normal way.

Logical deletion can be used for various reasons, including patient direction to remove material, and
in the situation where information about a different patient has been incorrectly committed to a
record, and has to be removed.
Date of Issue: 08 Apr 2007 Page 48 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Change Control Package
Rev 2.1.0
6.3.3 Version Identification
The version identification scheme described here is adapted from the work of Hnìtynka and Plášil [3].
VERSION objects are identified by a uid attribute, which is a three-part identifier consisting of the
attributes object_id, version_tree_id and creating_system_id (see support.identification
package in the Common IM). The first part of the VERSION identifier - the object_id attribute - is a
copy of the uid of the VERSIONED_OBJECT container in which the VERSION was originally created.
The second and third parts of the identifier are explained below. FIGURE 11 illustrates the scheme
graphically.

Local Versioning
The version_tree_id attribute of VERSION.uid identifies a version of an item with respect to other ver-
sions in the same tree. The requirementsof the identifier are the same as for typical versioning sys-
tems in use in software configuration management, and are as follows:

• to encode the relationship between versions in the version id, that is to say, version ids are
constructed such that given a series of ids, the relative positions in the tree can be deter-
mined;

• to allow for branches, so that variants of a particular node can be created; e.g. due to transla-
tion, or for training purposes.

A suitable scheme satisfying the above requirements for health information is the simplest possible,
i.e. a single number representing the version. Version identifiers thus start at 1 and continue by single
increments. The succession of version identifiers formed by changes over time is known as the
“trunk” of the version tree.

To support branching, a further pair of numbers is added. The first number identifies the branch (e.g.
the 1st branch, 2nd branch etc from that trunk node), while the second identifies the version. Both of
these numbers also start at 1. The result of this is that version numbers like 1.1.1 (first version of first
branch from trunk node 1), 2.3.3 (3rd version of 3rd branch from trunk node 2) are possible. Inside
openEHR systems where sharing with other systems does not occur, it is expected that branched ver-
sioning will be used rarely; translation is likely to be the only reason (for example if a Portuguese
translation of an English language version of a Composition is made).

VERSIONED_OBJECT<X>

VERSION<X>

AUDIT_
TRAIL

uid: 1234

uid: {1234 ; 1 ; au.gov.rdh }

VERSION<X>

AUDIT_
TRAIL

uid: {1234 ; 2 ; au.gov.rdh }

VERSION<X>

AUDIT_
TRAIL

uid: {1234 ; 3 ; au.gov.rdh }

VERSION<X>

AUDIT_
TRAIL

uid: {1234; 3.1.1; nz.gov.rnsh }

FIGURE 11 Version identification system

version tree id
system id
creating

OBJECT_
VERSION_ID

HIER_OBJECT_ID

object_id
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 49 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Change Control Package Common Information Model
Rev 2.1.0
Distributed Versioning
However, in a distributed environment where copying and subsequent modification can occur, there
are more requirements of the version identification scheme, as follows:

• it must be possible for an item to be copied and for local modifications then to be made
without causing version clashes;

• it must be possible to send more recent versions from the original system to a target system
that has already received earlier versions, and for these versions to be distinguishable from
versions in the receiving system, including the previously imported versions - this enables
the receiving system to know how and where to commit the received versions;

• it must be guaranteed that any version of any object is uniquely identified globally, no mat-
ter whether it is a locally created trunk version, a locally created branch version or a version
containing changes made to a copied version.

To satisfy these needs, two modifications are made to the identification scheme. The first is the addi-
tion of the creating_system_id attribute of VERSION.uid, representing the system where the version
was created. This is a machine processable identifier, such as a reverse internet address or GUID.
Whenever a new ORIGINAL_VERSION in a particular VERSIONED_OBJECT (with a particular uid) is
created locally, the VERSION.uid.creating_system_id is set to the identifier of the local system; if the
version was imported, creating_system_id will already have been set to the identifier of the system of
original creation.

The second modification is to require branching version identifiers to be used when local modifica-
tions are made to versions copied from elsewhere; this ensures that the modifications now being made
in the target system are considered in a global sense as logical branches or variants rather than trunk
versions which are made in the originating system. It also allows later trunk versions from the origi-
nating system to be copied at some future time to the target system without version identifier clashes.

In summary, this scheme uses the tuple {owner_id, version_tree_id, creating_system_id} to globally
uniquely identify any openEHR VERSION object.

6.4 Semantics in Distributed Systems

6.4.1 Copying
The Copy Operation
In openEHR, the smallest unit of copying of content between systems that satisfies traceability
requirements is the ORIGINAL_VERSION. In order to copy a OBSERVATION or even an COMPOSI-
TION somewhere else and retain versioning capability, its enclosing ORIGINAL_VERSION object
must be sent. When the type of content is a COMPOSITION for example, an
ORIGINAL_VERSION<COMPOSITION> object is sent. At the receiving system various steps will
occur depending on whether:

• any items for the EHR in question have ever been copied before;
• a copied EHR exists in the destination system for the subject of care, but no copies of the

particular item in question have even been made (e.g. it is the first time Family History has
been copied);

• an EHR exists, and previous copies have been made for the item in question;
• there is a duplicate EHR for the subject of care (i.e. created by new data entry rather than by

automatic copying).
Date of Issue: 08 Apr 2007 Page 50 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Change Control Package
Rev 2.1.0
In the first situation, there is not even an EHR (i.e. repository of Versioned objects for the patient in
question) in the target system. A new one has to be created. As mentioned in the EHR IM document,
the newly created EHR should re-use the EHR id from the source system. This establishes the new
EHR as an intentional clone of the source EHR (or more correctly, part of the family of EHRs making
up the virtual EHR for that patient).

If it is the first time any version of the item logically identified by its
ORIGINAL_VERSION.uid.object_id (i.e. the uid of its original VERSIONED_OBJECT, common to all
Versions in the same container) was received from the originating system, a new
VERSIONED_OBJECT<T> (e.g. VERSIONED_OBJECT<COMPOSITION>) is created, with its uid set to
the same value as the received VERSION.uid.object_id. This establishes the newly created
VERSIONED_OBJECT as being a logical clone of the one from which the received
ORIGINAL_VERSION was copied. If some version of the item had already been received, this step
will have already occurred, and the requisite VERSIONED_OBJECT would already exist.

An IMPORTED_VERSION instance is then created, its item set to the received ORIGINAL_VERSION,
and it is committed in the normal way (i.e. as part of a Contribution). The IMPORTED_VERSION
commit_audit and contribution attributes record the local act of committal. In this operation, the
ORIGINAL_VERSION instance is never modified - it remains a faithful copy of its original, no matter
how many systems it may be copied through.

Subsequent Local Modifications
In most cases, the received information will remain as is for the duration. However, in some cases,
users at the receiver system might want to make modifications as well. This is likely to happen in the
case of information items representing things like medication lists and allergies. When new versions
are added locally to a copied object, branching numbering is used in the uid.version_tree_id, while
the local system id is recorded in the uid.creating_system_id attribute.

These copying scenarios are illustrated in FIGURE 12. On the left hand-side of the figure, a version
container (i.e. an instance of VERSIONED_OBJECT) with uid=1 is shown; the first Version has
uid.creating_system_id=“sysA”; uid.version_tree_id=“1”. Further local trunk and branch versions are
also shown.

When the first ORIGINAL_VERSION is copied (copy #1) to system B, it is committed as an
IMPORTED_VERSION to a VERSIONED_OBJECT which is a clone of the original. Subsequent copies
(copy #2 and copy #3) can be made of later versions from system A to system B, with the effect that
the version tree can be recreated inside system B (if required; there is of course no obligation to do
anything with the received information). Users in system B an also make modifications to the
received Version copies; these modifications are shown in grey, as branched versions with
uid.creating_system_id = sysB. Independently, users in system B will of course be creating other con-
tent locally, e.g. as shown on the right-hand side, where a Versioned object with uid=2 has been cre-
ated. Two places are indicated on the diagram where identification clashes could have occurred, but
are prevented due to the use of the 3-part unique Version identifier scheme.

Two rules are required to make this system work, as follows:

• branch versions from the original systems that are copied to another system cannot be cop-
ied without their corresponding preceding versions on the same branch (if any) and trunk
versions also being copied;

• no system should create a new Versioned object (with a new uid) without first determining
that it does not already have one with the same uid. This should happen automatically if
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 51 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Change Control Package Common Information Model
Rev 2.1.0
GUIDs are being used (and the generating software is reliable); checks may have to be made
if ISO Oids are being used.

An important consequence of the way IMPORTED_VERSION is modelled is that in the Version con-
tainers resulting from copy operations, the commit times always reflect the local (more recent) act of
committal, not the original committal of the information to the container where it was created. This
ensures that a query for the state of a Version container at earlier commit times correctly returns what
information existed at that time in that container, rather than giving the illusion that recently copied
Versions were there earlier than the time of local committal (as would occur if the original commit
time of the ORIGINAL_VERSION object was used for comparison purposes in such queries). Accord-
ingly, such a query over an entire EHR or other versioned information repository always returns the
state of the repository available to users at that time, regardless of how many later merges or copies
were carried out. This is a key requirement for supporting medico-legal and historical investigations
of stored information.

6.4.2 Version Merging
One of the most common operations in distributed versioned environments, particularly in healthcare,
is that content created in one system is imported into another system, modifications are created
locally there which are then sent back the first system. This information pathway corresponds to sce-
narios such as the patient being referred from primary care into a hospital, and later being discharged
into primary (or other care).

The usual need when the first system receives changes made to the data by the second system is to
merge them back into the trunk of the version tree. Logically a ‘merge’ is the operation of using two
versions of the same content to create a third version. How the source versions are used will vary
based on the semantics of the information; it could be that the either is simply taken in its totality and
the other discarded, or some mixture might be created of the two in a process of editing by the user. In
many cases in health, such as where the content is a medication or problem list, the user in the origi-

FIGURE 12 Versioning in a distributed environment

sysA
1

sysB
2.1.1

sysA
3

sysA
2.1.1

sysB
2.1.2

sysA, EHR 111 sysB, EHR 111

copy #1

copy #2

uid=1 uid=1

copy #3

sysB
1

uid=2

sysA
2 = ORIGINAL_VERSION<T> = IMPORTED_VERSION<T>

No clash sysB
2.1.1

sysB
2

No clash

{}sysA
2

key

(due to uids)

sysA
2

sysA
1

sysA
2

sysA
2.1.1

sysA
3

Date of Issue: 08 Apr 2007 Page 52 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Change Control Package
Rev 2.1.0
nal system will review the received content and create a new trunk version locally using that content,
since it will be deemed to be the most accurate available in the clinical computing environment. This
scenario is illustrated in FIGURE 13.

In this figure, versions 1 and 2 of the content (e.g. a medication list) from Versioned object with uid=1
are copied from system A (e.g. a GP) to system B (e.g. a hospital). In system B, changes are made to
version 2, creating a branch (as an instance of IMPORTED_VERSION<T>) as required by the rules
described above. These changes (modified medication list) are then imported back into system A. The
system A user performs a merge operation to create a new trunk version 3, using the sysB/2.1.2 and
sysA/2 content; most likely, he simply reviews the two input versions and uses the sysB/2.1.2 content
unchanged (the result is that system A now has an up-to-date medication list for the patient, including
medications orginally recorded at system A, as well as additions recorded at system B). The new Ver-
sion is an instance of ORIGINAL_VERSION<T>, with its other_input_version_ids attribute set to
include the OBJECT_VERSION_ID representing sysB/2.1.2 (it does not need to include sysA/2, since
this is already known in the preceding_version_uid).

If in system A a modification had been done to the sysA/2 version, creating sysA/3, in parallel with
the system B changes, then a conflict situation is likely when the merge attempt is made. This may
need to be resolved by a human user, for whom an automated merge attempt could be presented on
the screen as a starting point, much as current source code control tools do today.

6.4.3 Disjoint Merging
An unintended but not uncommon situation is when distinct Version containers are created for the
same real-world entity. For example, separate EHRs can be created for the one patient, due to patient
identification errors or other procedural or administrative problems. Each record is likely to contain
some logically duplicated basic information, as well as information unique to that record, e.g. contrib-
uted by different hospital departments. Within the one EHR, unintentionally distinct Version contain-
ers might be created for the same logical item, such as the patient’s problem list.

FIGURE 13 Version Merging

sysB
2.1.1

sysB
2.1.2

sysA, EHR 111 sysB, EHR 111

uid=1 uid=1
sysA
1

sysA
2

reverse copy #1 {}
sysA
3

Merge

preceding_version=sysA/2
other_input_version_uids={sysB/2.1.2}

sysA
1

sysA
2

sysB
2.1.1

sysB
2.1.2

is_merged = True
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 53 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Change Control Package Common Information Model
Rev 2.1.0
These erroneous situations are eventually detected, and need to be rectified. Logically what is
required is to merge the two records (each potentially consisting of numerous Version containers) into
one, as shown in FIGURE 14.

The merge procedure is as follows:

• decide which record is to remain active (for merging purposes, this will be the “target”, the
other the “source”);

• for all Version containers in the source record...
- if there is a logical equivalent in the target record (for EHRs, there will typically

only be equivalents for persistent and possibly administrative Compositions),
perform a disjoint merge in the target Version container by:

* creating a new trunk version in the target Version container;
- if there is no logical equivalent, do the following:

* create a new target Version container;
* create its first trunk Version;

- in both cases, continue as follows:
* set the data in the new trunk Version to be a copy of the data from the most

recent trunk Version from the source container;
* set other_input_version_uids to include the uid of the source Version being

merged (this uid will contain the uid of the Version container being logi-
cally deleted);

* for any branches on the most recent trunk Version in the source container,
create corresponding branches on the newly created trunk Version in the

FIGURE 14 Merging of Disjoint Versions

uid=1 uid=2

sysA
1.1.1 sysA

2

sysA
1

sysA
2

sysA
2.1.1 sysA

3

sysA
1

uid=1 uid=2

sysA
1.1.1 sysA

2

sysA
1

sysA
2

sysA
2.1.1 sysA

3

sysA
1

sysA
4

Merge

sysA
3

lifecycle
_state =
deleted

uid=3

ehr_id=111 ehr_id=122
patient = 12345

ehr_id=111 ehr_id=122

uid=4
sysA
1

uid=3

Merge

patient = 12345

sysA
2

sysA
1

sysA
2

sysA
1

sysA
3

lifecycle
_state =
deleted
Date of Issue: 08 Apr 2007 Page 54 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Change Control Package
Rev 2.1.0
target, include the corresponding content and set the
other_input_version_uids in the target in the same way as above;

* add a new trunk Version to the source container, with the data set to Void,
and lifecycle_state set to deleted.

As for copying and merging, an important consequence of this procedure is that the resulting record
(i.e. the target of the merge procedure) continues to correctly represent previous states of the reposi-
tory, regardless of how many recent merges have occurred.

6.4.4 Moving Version Containers
It will not be uncommon that whole VERSIONED_OBJECTS need to be moved to another system, e.g.
due to a move of a complete patient record (due to the patient moving), or re-organisation of EHR
data centres. The semantics of a move are different from those of copying: with a move, there is no
longer a source instance after the operation; the destination instance becomes the primary instance.

When the move is effected, the identifier of the system in which the VERSIONED_OBJECT now exists
will usually be different from what it was before. As a consequence, subsequent versions of the con-
tent created in a moved version container will now have the uid.creating_system_id set to the id of the
new system. This creates another variation on the version lineage, one in which the
uid.creating_system_id value can change in the trunk line, as shown in FIGURE 15.

6.5 Class Descriptions

6.5.1 VERSIONED_OBJECT Class

CLASS VERSIONED_OBJECT<T>

Purpose Version control abstraction, defining semantics for versioning one complex
object.

Attributes Signature Meaning

FIGURE 15 A Moved Version Container

sysA
1

sysA
2

sysA, EHR 111 sysB, EHR 111

move

uid=1
sysA
1

sysA
2

uid=1

sysB
3

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 55 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Change Control Package Common Information Model
Rev 2.1.0
1..1

uid: HIER_OBJECT_ID Unique identifier of this
version container. This id
will be the same in all
instances of the same con-
tainer in a distributed envi-
ronment, meaning that it
can be understood as the
uid of the “virtual version
tree”.

1..1

owner_id: OBJECT_REF Reference to object to
which this version con-
tainer belongs, e.g. the id of
the containing EHR or
other relevant owning
entity.

1..1 time_created: DV_DATE_TIME Time of initial creation of
this versioned object.

Functions Signature Meaning

1..1 all_versions:
List <VERSION<T>>

Return a list of all versions
in this object.

1..1 all_version_ids:
List <OBJECT_VERSION_ID>

Return a list of ids of all
versions in this object.

1..1 version_count: Integer Return the total number of
versions in this object

has_version_id (a_ver_id:
OBJECT_VERSION_ID): Boolean
require
a_ver_id /= Void

True if a version with an_id
exists.

is_original_version (a_ver_id:
OBJECT_VERSION_ID): Boolean
require
a_ver_id /= Void and has_version_id(a_ver_id)

True if version with an_id
is an
ORIGINAL_VERSION.

has_version_at_time (a_time: DV_DATE_TIME):
Boolean
require
a_time /= Void

True if a version for time
‘a_time’ exists.

version_with_id (a_ver_id:
OBJECT_VERSION_ID): VERSION<T>
require
has_version_id(a_ver_id)

Return the version with id
‘an_id’.

CLASS VERSIONED_OBJECT<T>
Date of Issue: 08 Apr 2007 Page 56 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Change Control Package
Rev 2.1.0
version_at_time (a_time: DV_DATE_TIME):
VERSION<T>
require
has_version_at_time(a_time)

Return the version for time
‘a_time’.

latest_version: VERSION<T> Return the most recently
added version (i.e. on trunk
or any branch).

latest_trunk_version: VERSION<T> Return the most recently
added trunk version.

1..1

trunk_lifecycle_state: DV_CODED_TEXT
ensure
Result = latest_trunk_version.lifecycle_state

Return the lifecycle state
from the latest trunk ver-
sion. Useful for determin-
ing if the version container
is logically deleted.

1..1
revision_history: REVISION_HISTORY History of all audits and

attestations in this ver-
sioned repository.

commit _original_version
(a_contribution: OBJECT_REF;
a_new_version_uid, a_preceding_version_uid:
OBJECT_VERSION_ID;
an_audit: AUDIT_DETAILS;
a_lifecycle_state: DV_CODED_TEXT;
a_data: T;
signing_key: String)

require
Contribution_valid: a_contribution /= Void
New_version_valid: a_new_version_uid /= Void
Preceding_version_uid_valid:

all_version_ids.has(a_preceding_version_uid) or
else version_count = 0
audit_valid: an_audit /= Void
data_valid: a_version_data /= Void
lifecycle_state_valid: a_lifecycle_state /= Void

Add a new original version.

CLASS VERSIONED_OBJECT<T>
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 57 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Change Control Package Common Information Model
Rev 2.1.0
commit _original_merged_version
(a_contribution: OBJECT_REF;
a_new_version_uid, a_preceding_version_uid:
OBJECT_VERSION_ID;
an_audit: AUDIT_DETAILS;
a_lifecycle_state: DV_CODED_TEXT;
a_data: T;
an_other_input_uids:
Set<OBJECT_VERSION_ID>;
signing_key: String)

require
Contribution_valid: a_contribution /= Void
New_version_valid: a_new_version_uid /= Void
Preceding_version_id_valid:

all_version_ids.has(a_preceding_version_uid) or
else version_count = 0
audit_valid: an_audit /= Void
data_valid: a_version_data /= Void
lifecycle_state_valid: a_lifecycle_state /= Void
Merge_input_ids_valid: an_other_input_uids /=

Void

Add a new original merged
version. This commit func-
tion adds a parameter con-
taining the ids of other
versions merged into the
current one.

commit _imported_version
(a_contribution: OBJECT_REF;
an_audit: AUDIT_DETAILS;
a_version: ORIGINAL_VERSION<T>)

require
Contribution_valid: a_contribution /= Void
audit_valid: an_audit /= Void
Version_valid: a_version /= Void

Add a new imported ver-
sion. Details of version id
etc come from the
ORIGINAL_VERSION
being committed.

commit_attestation (
an_attestation: ATTESTATION;
a_ver_id: OBJECT_VERSION_ID;
signing_key: String)

require
Attestation_valid: an_attestation /= Void
Version_id_valid: has_version_id(a_ver_id)

and is_original_version(a_ver_id)

Add a new attestation to a
specified original version.
Attestations can only be
added to Original versions.

CLASS VERSIONED_OBJECT<T>
Date of Issue: 08 Apr 2007 Page 58 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Change Control Package
Rev 2.1.0
6.5.2 VERSION Class

Invariant

uid_valid: uid /= Void
owner_id_valid: owner_id /= Void
time_created_valid: time_created /= Void
version_count_valid: version_count >= 0
all_version_ids_valid: all_version_ids /= Void and then all_version_ids.count =
version_count
all_versions_valid: all_versions /= Void and then all_versions.count =
version_count
latest_version_valid: version_count > 0 implies latest_version /= Void
revision_history_valid: revision_history /= Void

CLASS VERSION<T> (abstract)

Purpose Abstract model of one Version within a Version container, containing data, com-
mit audit trail, and the identifier of its Contribution.

Abstract Signature Meaning

1..1 uid:
OBJECT_VERSION_ID

Unique identifier of this version, containing
owner_id, version_tree_id and creating_system_id.

0..1
preceding_version_uid:
OBJECT_VERSION_ID

Unique identifier of the version of which this ver-
sion is a modification; Void if this is the first ver-
sion.

0..1 data: T Original content of this Version.

1..1 lifecycle_state:
DV_CODED_TEXT

Lifecycle state of this version; coded by openEHR
vocabulary “version lifecycle state”.

Attributes Signature Meaning

1..1 commit_audit:
AUDIT_DETAILS

Audit trail corresponding to the committal of this
version to the VERSIONED_OBJECT.

1..1 contribution:
OBJECT_REF

Contribution in which this version was added.

0..1 signature: String OpenPGP digital signature or digest of content
committed in this Version.

Functions Signature Meaning

1..1 owner_id:
HIER_OBJECT_ID

Unique identifier of the owning
VERSIONED_OBJECT.

1..1 is_branch: Boolean True if this Version represents a branch. Derived
from uid attribute.

CLASS VERSIONED_OBJECT<T>
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 59 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Change Control Package Common Information Model
Rev 2.1.0
6.5.3 ORIGINAL_VERSION Class

1..1 canonical_form: String Canonical form of Version object, created by serial-
ising all attributes except signature.

Invariant

Uid_valid: uid /= Void
Owner_id_valid: owner_id /= Void and then
owner_id.value.is_equal(uid.object_id.value)
Commit_audit_valid: commit_audit /= Void
Contribution_valid: contribution /= Void and contribution.type.is_equal(“CON-
TRIBUTION”)
Preceding_version_uid_validity: uid.version_tree_id.is_first xor
preceding_version_uid /= Void
Lifecycle_state_valid: lifecycle_state /= Void and then
terminology(Term_id_openehr).
has_code_for_group_id(Group_id_version_lifecycle_state,
lifecycle_state.defining_code)

CLASS ORIGINAL_VERSION<T>

Purpose A Version containing locally created content and optional attestations.

Attributes Signature Meaning

1..1
(effected)

uid: OBJECT_VERSION_ID Stored version of inheritance precursor.

0..1
(effected)

preceding_version_uid:
OBJECT_VERSION_ID

Stored version of inheritance precursor.

0..1 other_input_version_uids:
Set<OBJECT_VERSION_ID>

Identifiers of other versions whose content was
merged into this version, if any.

0..1
(effected)

data: T The data being versioned. If not present, this
corresponds to logical deletion.

0..1 attestations:
List <ATTESTATION>

Set of attestations relating to this version.

1..1
(effected)

lifecycle_state:
DV_CODED_TEXT

Lifecycle state of the content item in this ver-
sion.

Functions Signature Meaning

is_merged: Boolean True if this Version was created from more than
just the preceding (checked out) version.

CLASS VERSION<T> (abstract)
Date of Issue: 08 Apr 2007 Page 60 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Change Control Package
Rev 2.1.0
6.5.4 IMPORTED_VERSION Class

6.5.5 CONTRIBUTION Class

Invariant

Attestations_valid: attestations /= Void implies not attestations.is_empty
Is_merged_validity: other_input_version_ids = Void xor is_merged
Other_input_version_uids_valid: other_input_version_uids /= Void implies not
other_input_version_uids.is_empty

CLASS IMPORTED_VERSION<T>

Purpose

Versions whose content is an ORIGINAL_VERSION copied from another location;
this class inherits commit_audit and contribution from VERSION<T>, providing
imported versions with their own audit trail and Contribution, distinct from those
of the imported ORIGINAL_VERSION.

Inherit VERSION<T>.

Attributes Signature Meaning

1..1 item:
ORIGINAL_VERSION<T>

The ORIGINAL_VERSION object that was
imported.

Functions Signature Meaning

(effected)
uid: OBJECT_VERSION_ID
ensure
Result = item.uid

Computed version of inheritance precursor,
derived as item.uid.

(effected) data: T Data of wrapped ORIGINAL_VERSION.

(effected)

preceding_version_uid:
OBJECT_VERSION_ID
ensure
Result = item.
preceding_version_uid

Computed version of inheritance precursor,
derived as item.preceding_version_uid.

(effected)
lifecycle_state:
DV_CODED_TEXT

Lifecycle state of the content item in wrapped
ORIGINAL_VERSION, derived as
item.lifecycle_state.

Invariant Item_valid: item /= Void

CLASS CONTRIBUTION

Purpose Documents a contribution of one or more versions added to a change-controlled
repository.

CLASS ORIGINAL_VERSION<T>
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 61 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Change Control Package Common Information Model
Rev 2.1.0
Attributes Signature Meaning

1..1 uid: HIER_OBJECT_ID Unique identifier for this contribution.

1..1

versions:
Set<OBJECT_REF>

Set of references to versions causing changes to
this EHR. Each contribution contains a list of ver-
sions, which may include paths pointing to any
number of VERSIONABLE items, i.e. items of type
COMPOSITION and FOLDER.

1..1 audit: AUDIT_DETAILS Audit trail corresponding to the committal of this
Contribution.

Invariants

uid_valid: uid /= Void
audit_valid: audit /= Void
Versions_valid: versions /= Void and then not versions.is_empty
Description_valid: audit.description /= Void

CLASS CONTRIBUTION
Date of Issue: 08 Apr 2007 Page 62 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Resource Package
Rev 2.1.0
7 Resource Package

7.1 Overview
The common.resource package defines the structure and semantics of the general notion of an online
resource which has been created by a human author, and consequently for which natural language is a
factor. The package is illustrated in FIGURE 16.

7.1.1 Natural Languages and Translation
Authored resources contain natural language elements, and are therefore created in some original lan-
guage, recorded in the orginal_language attribute of the AUTHORED_RESOURCE class. Information
about translations is included in the translations attribute, which allows for one or more sets of trans-
lation details to be recorded. A resource is translated by doing the following:

• translating every language-dependent element to the new language;
• adding a new TRANSLATION_DETAILS instance to translations, containing details about the

translator, organisation, quality assurance and so on.
• any further translations to language-specific elements in a instances of descendent type of

AUTHORED_RESOURCE.

The languages_available function provides a complete list of languages in the resource.

7.1.2 Meta-data
What is normally considered the ‘meta-data’ of a resource, i.e. its author, date of creation, purpose,
and other descriptive items, is described by the RESOURCE_DESCRIPTION and

RESOURCE_DESCRIPTION
original_author[1]:
Hash<String, String>
other_contributors[0..1]:
List<String>
lifecycle_state[1]: String
resource_package_uri[0..1]:
String
other_details[0..1]:
Hash<String, String>

RESOURCE_
DESCRIPTION_ITEM
language[1]: CODE_PHRASE
purpose[1]: String
keywords[0..1]: List<String>
use[0..1]: String
misuse[0..1]: String
copyright[0..1]: String
original_resource_uri[0..1]:
Hash<String, String>
other_details[0..1]:
Hash<String, String>

resource

FIGURE 16 openehr.rm.common.resource Package

description

0..1revision_history

*

details
*

TRANSLATION_DETAILS
language[1]: CODE_PHRASE
author[1]: Hash<String,
String>
accreditation[0..1]: String
other_details[0..1]:
Hash<String, String>

translations

AUTHORED_RESOURCE
original_language[1]:
CODE_PHRASE
is_controlled[0..1]:
Boolean
current_revision: String
languages_available:
Set<String>

parent_
0..1

resource

coded by openEHR
codeset “languages”

(rm.common.generic)
REVISION_HISTORY

coded by openEHR
codeset “languages”

0..1
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 63 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Resource Package Common Information Model
Rev 2.1.0
RESOURCE_DESCRIPTION_ITEM classes. The parts of this that are in natural language, and therefore
may require translated versions, are represented in instances of the RESOURCE_DESCRIPTION_ITEM
class. Thus, if a RESOURCE_DESCRIPTION has more than one RESOURCE_DESCRIPTION_ITEM, each of
these should carry exactly the same information in a different natural language.

The AUTHORED_RESOURCE.description attribute is optional, allowing for resources with no meta-data
at all, e.g. resources in a partial state of construction. The translations attribute may still be required,
since there may be other parts of the resource object (specified by a class into which
AUTHORED_RESOURCE is inherited) that are language-dependent.

7.1.3 Revision History
When the resource is considered to be in a state where changes to it should be controlled, the
is_controlled attribute is set to True, and all subsequent changes should have an audit trail recorded.
Usually controlled resources would be managed in a versioned repository (e.g. implemented by CVS,
Subversion or similar systems), and audit information will be stored somewhere in the repository (e.g.
in version control files). The revision_history attribute defined in the AUTHROED_RESOURCE class is
intended to act as a documentary copy of the revision history as known inside the repository, for the
benefit of users of the resource. Given that resources in different places may well be managed in dif-
ferent kinds of repositories, having a copy of the revision history in a standardised form within the
resource enables it to be used interoperably by authoring and other tools.

Every change to a resource committed to the relevant repository causes a new addition to the
revision_history.

7.2 Class Definitions

7.2.1 AUTHORED_RESOURCE Class

CLASS AUTHORED_RESOURCE (abstract)

Purpose Abstract idea of an online resource created by a human author.

Attributes Signature Meaning

1..1

original_language:
CODE_PHRASE

Language in which this resource was initially
authored. Although there is no language pri-
macy of resources overall, the language of
original authoring is required to ensure natural
language translations can preserve quality.
Language is relevant in both the description
and ontology sections.

0..1

translations: Hash
<TRANSLATION_DETAILS,
String>

List of details for each natural translation made
of this resource, keyed by language. For each
translation listed here, there must be corre-
sponding sections in all language-dependent
parts of the resource. The original_language
does not appear in this list.
Date of Issue: 08 Apr 2007 Page 64 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Resource Package
Rev 2.1.0
7.2.2 TRANSLATION_DETAILS Class

0..1 description:
RESOURCE_DESCRIPTION

Description and lifecycle information of the
resource.

0..1
(cond)

revision_history:
REVISION_HISTORY

The revision history of the resource. Only
required if is_controlled = True (avoids large
revision histories for informal or private edit-
ing situations).

1..1
is_controlled: Boolean True if this resource is under any kind of

change control (even file copying), in which
case revision history is created.

Functions Signature Meaning

1..1

current_revision: String
ensure
Result = revision_history.
most_recent_version

Most recent revision in revision_history if
is_controlled else “(uncontrolled)”.

1..1
languages_available:
Set<String>

Total list of languages available in this
resource, derived from original_language and
translations.

Invariant

Original_language_valid: original_language /= void and then
code_set(Code_set_id_languages).has_code(original_language.as_string)
Languages_available_valid: languages_available /= Void and then
languages_available.has(original_language)
Revision_history_valid: is_controlled xor revision_history = Void
Current_revision_valid: (current_revision /= Void and not is_controlled)
implies current_revision.is_equal(“(uncontrolled)”)
Translations_valid: translations /= Void implies (not translations.is_empty and
not translations.has(orginal_language.code_string))
Description_valid: translations /= Void implies (description.details.for_all(d |
translations.has_key(d.language.code_string)))

CLASS TRANSLATION_DETAILS

Purpose Class providing details of a natural language translation.

Attributes Signature Meaning

1..1 language: CODE_PHRASE Language of translation

1..1 author:
Hash<String, String>

Translator name and other demographic
details

CLASS AUTHORED_RESOURCE (abstract)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 65 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Resource Package Common Information Model
Rev 2.1.0
7.2.3 RESOURCE_DESCRIPTION Class

0..1 accreditation: String Accreditation of translator, usually a national
translator’s association id

0..1 other_details:
Hash<String, String>

Any other meta-data

Invariant
Language_valid: language /= Void and then
code_set(Code_set_id_languages).has_code(language)
Author_valid: author /= Void

CLASS RESOURCE_DESCRIPTION

Purpose Defines the descriptive meta-data of a resource.

Attributes Signature Meaning

1..1 original_author:
Hash <String, String>

Original author of this resource, with all rele-
vant details, including organisation.

0..1 other_contributors:
List <String>

Other contributors to the resource, probably
listed in “name <email>” form.

1..1

lifecycle_state: String Lifecycle state of the resource, typically
including states such as: initial, sub-
mitted, experimental,
awaiting_approval, approved, super-
seded, obsolete.

1..1
details: Hash <RESOURCE_
DESCRIPTION_ITEM, String>

Details of all parts of resource description
that are natural language-dependent, keyed
by language code.

0..1 resource_package_uri:
String

URI of package to which this resource
belongs.

0..1 other_details:
Hash <String, String>

Additional non language-senstive resource
meta-data, as a list of name/value pairs.

0..1 parent_resource:
AUTHORED_RESOURCE

Reference to owning resource.

CLASS TRANSLATION_DETAILS
Date of Issue: 08 Apr 2007 Page 66 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model Resource Package
Rev 2.1.0
Invariant

Original_author_valid: original_author /= Void and then not
original_author.is_empty
Lifecycle_state_valid: lifecycle_state /= Void and then not
lifecycle_state.is_empty
Details_valid: details /= Void and then not details.is_empty
Language_valid: parent_resource /= Void implies details.for_all (d |
parent_resource.languages_available.has(d.language.code_string))
Parent_resource_valid: parent_resource /= Void implies
parent_resource.description = Current

CLASS RESOURCE_DESCRIPTION
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 67 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Resource Package Common Information Model
Rev 2.1.0
7.2.4 RESOURCE_DESCRIPTION_ITEM Class

CLASS RESOURCE_DESCRIPTION_ITEM

Purpose
Language-specific detail of resource description. When a resource is translated
for use in another language environment, each RESOURCE_DESCRIPTION_ITEM
needs to be copied and translated into the new language.

Attributes Signature Meaning

1..1
language: CODE_PHRASE The localised language in which the items in

this description item are written. Coded from
openEHR Code Set “languages”.

1..1 purpose: String Purpose of the resource.

0..1 keywords: List<String> Keywords which characterise this resource,
used e.g. for indexing and searching.

0..1 use: String Description of the uses of the resource, i.e.
contexts in which it could be used.

0..1 misuse: String Description of any misuses of the resource,
i.e. contexts in which it should not be used.

0..1 copyright: String Optional copyright statement for the resource
as a knowledge resource.

0..1

original_resource_uri:
Hash<String, String>

URIs of original clinical document(s) or
description of which resource is a formalisa-
tion, in the language of this description item;
keyed by meaning.

0..1 other_details:
Hash<String, String>

Additional language-senstive resource meta-
data, as a list of name/value pairs.

Invariant

Language_valid: language /= Void and then
code_set(Code_set_id_languages).has_code(language)
purpose_valid: purpose /= Void and then not purpose.is_empty
use_valid: use /= Void implies not use.is_empty
misuse_valid: misuse /= Void implies not misuse.is_empty
copyright_valid: copyright /= Void implies not copyright.is_empty
Date of Issue: 08 Apr 2007 Page 68 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

Common Information Model References
Rev 2.1.0
A References

A.1 General
1 Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems.

See http://www.deepthought.com.au/it/archetypes.html.

2 Cimino J J. Desiderata for Controlled Medical vocabularies in the Twenty-First Century. IMIA
WG6 Conference, Jacksonville, Florida, Jan 19-22, 1997.

3 Hnìtynka P, Plášil F. Distributed Versioning Model for MOF. Proceedings of WISICT 2004,
Cancun, Mexico, A volume in the ACM international conference proceedings series, published
by Computer Science Press, Trinity College Dublin Ireland, 2004.

4 Schloeffel P. (Editor). Requirements for an Electronic Health Record Reference Architecture.
(ISO TC 215/SC N; ISO/WD 18308). International Standards Organisation, Australia, 2002.

A.2 European Projects
5 Dixon R, Grubb P A, Lloyd D, and Kalra D. Consolidated List of Requirements. EHCR Support

Action Deliverable 1.4. European Commission DGXIII, Brussels; May 200159pp Available
from http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/del1-4v1_3.PDF.

6 Dixon R, Grubb P, Lloyd D. EHCR Support Action Deliverable 3.5: "Final Recommendations
to CEN for future work". Oct 2000. Available at http://www.chime.ucl.ac.uk/HealthI/EHCR-
SupA/documents.htm.

7 Dixon R, Grubb P, Lloyd D. EHCR Support Action Deliverable 2.4 "Guidelines on Interpreta-
tion and implementation of CEN EHCRA". Oct 2000. Available at ht-
tp://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/documents.htm.

8 Ingram D. The Good European Health Record Project. Laires, Laderia Christensen, Eds. Health
in the New Communications Age. Amsterdam: IOS Press; 1995; pp. 66-74.

9 Deliverable 19,20,24: GEHR Architecture. GEHR Project 30/6/1995

A.3 CEN
10 ENV 13606-1 - Electronic healthcare record communication - Part 1: Extended architecture.

CEN/ TC 251 Health Informatics Technical Committee.

11 ENV 13606-2 - Electronic healthcare record communication - Part 2: Domain term list. CEN/
TC 251 Health Informatics Technical Committee.

12 ENV 13606-4 - Electronic Healthcare Record Communication standard Part 4: Messages for
the exchange of information. CEN/ TC 251 Health Informatics Technical Committee.

A.4 OMG
13 CORBAmed document: Person Identification Service. (March 1999). (Authors?)

14 CORBAmed document: Lexicon Query Service. (March 1999). (Authors?)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 69 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://www.deepthought.com.au/it/archetypes.html
http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/del1-4v1_3.PDF
http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/documents.htm
http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/documents.htm
http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/documents.htm
http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/documents.htm

References Common Information Model
Rev 2.1.0
A.5 Software Engineering
15 Meyer B. Object-oriented Software Construction, 2nd Ed.

Prentice Hall 1997

16 Fowler M. Analysis Patterns: Reusable Object Models. Addison Wesley 1997

17 Fowler M, Scott K. UML Distilled (2nd Ed.). Addison Wesley Longman 2000

A.6 Resources
18 IANA - http://www.iana.org/.
Date of Issue: 08 Apr 2007 Page 70 of 71 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}
© 2003-2007 The openEHR Foundation.

email: info@openEHR.org web: http://www.openEHR.org

http://www.iana.org/

Common Information Model
Rev 2.1.0

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 71 of 71 Date of Issue: 08 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

END OF DOCUMENT

	Copyright Notice
	Amendment Record
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Purpose
	1.2 Related Documents
	1.3 Status
	1.4 Peer review
	1.5 Conformance

	2 Overview
	3 Archetyped Package
	3.1 Overview
	3.1.1 The PATHABLE Class
	3.1.2 The LOCATABLE Class
	3.1.3 Feeder System Audit

	3.2 Class Descriptions
	3.2.1 Class PATHABLE
	3.2.2 Class LOCATABLE
	3.2.3 ARCHETYPED Class
	3.2.4 LINK Class
	3.2.5 FEEDER_AUDIT Class
	3.2.6 FEEDER_AUDIT_DETAILS Class

	4 Generic Package
	4.1 Overview
	4.2 Design Principles
	4.2.1 Referring to Demographic Entities
	4.2.2 Participation
	4.2.3 Audit Information
	4.2.4 Attestation

	4.3 Class Descriptions
	4.3.1 PARTY_PROXY Class
	4.3.2 PARTY_SELF Class
	4.3.3 PARTY_IDENTIFIED Class
	4.3.4 PARTY_RELATED Class
	4.3.5 PARTICIPATION Class
	4.3.6 AUDIT_DETAILS Class
	4.3.7 ATTESTATION Class
	4.3.8 REVISION_HISTORY Class
	4.3.9 REVISION_HISTORY_ITEM Class

	5 Directory Package
	5.1 Overview
	5.1.1 Paths

	5.2 Class Descriptions
	5.2.1 VERSIONED_FOLDER Class
	5.2.2 FOLDER Class

	6 Change Control Package
	6.1 Overview
	6.2 Basic Semantics
	6.2.1 Typing
	6.2.2 Versioned Objects
	6.2.3 Version and its Subtypes
	6.2.4 The “Virtual Version Tree”
	6.2.5 Contributions
	6.2.6 Committal and Audits
	6.2.7 Digital Signature
	6.2.8 Attestation

	6.3 Versioning Semantics
	6.3.1 Version Lifecycle
	6.3.2 Logical Deletion
	6.3.3 Version Identification

	6.4 Semantics in Distributed Systems
	6.4.1 Copying
	6.4.2 Version Merging
	6.4.3 Disjoint Merging
	6.4.4 Moving Version Containers

	6.5 Class Descriptions
	6.5.1 VERSIONED_OBJECT Class
	6.5.2 VERSION Class
	6.5.3 ORIGINAL_VERSION Class
	6.5.4 IMPORTED_VERSION Class
	6.5.5 CONTRIBUTION Class

	7 Resource Package
	7.1 Overview
	7.1.1 Natural Languages and Translation
	7.1.2 Meta-data
	7.1.3 Revision History

	7.2 Class Definitions
	7.2.1 AUTHORED_RESOURCE Class
	7.2.2 TRANSLATION_DETAILS Class
	7.2.3 RESOURCE_DESCRIPTION Class
	7.2.4 RESOURCE_DESCRIPTION_ITEM Class

	A References
	A.1 General
	A.2 European Projects
	A.3 CEN
	A.4 OMG
	A.5 Software Engineering
	A.6 Resources

