
Release 1 .0 .1
The openEHR Reference Model

Data Types Information Model

Keywords: EHR, ADL, health records, modelling, constraints

Editors: {T Beale, S Heard}a, {D Kalra, D Lloyd}b

a. Ocean Informatics
b. Centre for Health Informatics and Multi-professional Education,
University College London

Revision: 2.1.0 Pages: 91 Date of issue: 12 Apr 2007

Data Structures

Data Types

DemographicEHR

Security

EHR Extract

Archetype OM

Support

Common

Integration

Composition openEHR Archetype Profile

Template OM

ADL
© 2003-2007 The openEHR Foundation.

The openEHR Foundation is an independent, non-profit community, facilitating the sharing of
health records by consumers and clinicians via open-source, standards-based implementations.

Founding
Chairman

David Ingram, Professor of Health Informatics,
CHIME, University College London

Founding
Members

Dr P Schloeffel, Dr S Heard, Dr D Kalra, D Lloyd, T Beale

email: info@openEHR.org web: http://www.openEHR.org

http://www.openEHR.org

Data Types Information Model
Rev 2.1.0
Copyright Notice

© Copyright openEHR Foundation 2001 - 2007
All Rights Reserved

1. This document is protected by copyright and/or database right throughout the
world and is owned by the openEHR Foundation.

2. You may read and print the document for private, non-commercial use.
3. You may use this document (in whole or in part) for the purposes of making

presentations and education, so long as such purposes are non-commercial and
are designed to comment on, further the goals of, or inform third parties
about, openEHR.

4. You must not alter, modify, add to or delete anything from the document you
use (except as is permitted in paragraphs 2 and 3 above).

5. You shall, in any use of this document, include an acknowledgement in the form:
"© Copyright openEHR Foundation 2001-2007. All rights reserved. www.openEHR.org"

6. This document is being provided as a service to the academic community and on
a non-commercial basis. Accordingly, to the fullest extent permitted under
applicable law, the openEHR Foundation accepts no liability and offers no
warranties in relation to the materials and documentation and their content.

7. If you wish to commercialise, license, sell, distribute, use or otherwise copy
the materials and documents on this site other than as provided for in
paragraphs 1 to 6 above, you must comply with the terms and conditions of the
openEHR Free Commercial Use Licence, or enter into a separate written agreement
with openEHR Foundation covering such activities. The terms and conditions of
the openEHR Free Commercial Use Licence can be found at
http://www.openehr.org/free_commercial_use.htm
Date of Issue: 12 Apr 2007 Page 2 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model
Rev 2.1.0
Amendment Record

Issue Details Raiser Completed

R E L E A S E 1.0.1

2.1.0 CR-000144: Add new type: DV_PROPORTION.
CR-000198: Change DV_Date/Time/Duration to have value as
attribute.
CR-000199: Add normal_range attribute to DV_ORDERED.
CR-000200. Correct Release 1.0 typographical errors. Correct
DV_ENCAPSULATED.size to abstract in definition table. Correct
DV_STATE.value in UML of basic package to be
DV_CODED_TEXT. Correct DV_ORDINAL.symbol type to
DV_CODED_TEXT in UML diagram for QUANTITY package.
Add missing inheritance of Ordered to DV_ORDERED.
CR-000205: Convert Date/time constants to a class.
CR-000211: Add magnitude_status to DV_QUANTIFIED.
CR-000215: Merge DV_PARTIAL_XX date/time classes and
move ISO 8601 semantics to Support IM. Remove
DV_WORLD_TIME class.
CR-000216: Allow mixture of W, D etc in ISO8601 Duration
(deviation from standard).
CR-000219: Use constants instead of literals to refer to termi-
nology in RM.
CR-000221. Add normal_status to DV_ORDERED. Adjusted
invariants.
CR-000227: Remove DV_QUANTITY_RATIO.
CR-000230: Change DV_DATE_TIME.to_quantity to seconds
CR-000236: Change use of Character to Octet in
DV_MULTIMEDIA.
CR-000237: Correct semantics of Quantity and Date/Time
types.
CR-000240: Allow DV_ORDINAL values to be negative.
CR-000247: Add DV_TEMPORAL class to Quantity package.

S Heard
S Heard

S Heard
H Frankel
S Heard
G Grieve
D Lloyd
R Chen

G Grieve
D Lloyd
S Heard
T Beale

S Heard

R Chen

H Frankel

S Heard
C Ma

G Grieve

T Beale
G Grieve
R Chen

H Frankel

12 Apr 2007

R E L E A S E 1.0

2.0.0 CR-000176. Make DV_QUANTIFIED accuracy optional.
CR-000163. Add identifiers to FEEDER_AUDIT for originating
and gateway systems. Added assigner attribute to
DV_IDENTIFIER.
CR-000121. Improve DV_EHR_URI model to support Xpath
style paths.
CR-000161. Support distributed versioning. Remove functions
from DV_EHR_URI.

S Heard
H Frankel

T Beale

T Beale
H Frankel

01 Feb 2006

R E L E A S E 0.96

R E L E A S E 0.95

1.9.1 Improve implementation guidance. DV_ORDINAL.limits type
corrected to REFERENCE_RANGE<DV_ORDINAL>.

D Lloyd 22 Feb 2005
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 3 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model
Rev 2.1.0
1.9 CR-000126. Correct details of partial date/time classes.
CR-000112. Add DV_PARTIAL_DATE_TIME class
CR-000113. Add DATA_VALUE subtype for identifying real-
world entities
CR-000118. Make package names lower case.
CR-000119. Improve Data types documentation.
CR-000102. Make DV_TEXT language and charset optional.

T Beale
DSTC
DSTC

T Beale
T Beale
DSTC

09 Dec 2004

R E L E A S E 0.9

1.8 CR-000023. TERM_MAPPING.match should be coded/enumer-
ated.
CR-000069. Correct date/time types statistical descriptions.
CR-000046. Rename COORDINATED_TERM to CODE_PHRASE
and DV_CODED_TEXT.definition to defining_code.
CR-000084. Rename DV_COUNTABLE to DV_COUNT.
CR-000090. Make TERM_MAPPING.purpose optional.
CR-000091. Correct anomalies in use of CODE_PHRASE and
DV_CODED_TEXT.
CR-000094. Add lifecycle state attribute to VERSION; correct
DV_STATE.
CR-000095. Remove property attribute from Quantity pack-
age.
Formally validated using ISE Eiffel 5.4.

G Grieve

A Goodchild
T Beale

DSTC
DSTC

T Beale

DSTC

DSTC,
S Heard

09 Mar 2004

1.7.9 CR-000066. Make DV_ORDERED.normal_range a function.
Correct UML for DV_QUANTITY.

Z Tun 10 Nov 2003

1.7.8 CR-000053. Make DV_ORDINAL.limits a function.
CR-000054. Move DV_QUANTIFIED.is_normal to DV_ORDERED
CR-000055. Redefine DV_ORDERED.less_than as infix func-
tion '<'.

T Beale
T Beale
T Beale

02 Nov 2003

1.7.7 CR-000041. Visually differentiate primitive types in openEHR
documents.
CR-000034. State representation of date/time classes to be
ISO8601.
CR-000052. Change DV_DURATION.sign to prefix "-" operation.
CR-000042. Make DV_ORDINAL.rubric a DV_CODED_TEXT;
type attribute not needed.

D Lloyd,
DSTC,
T Beale

26 Oct 2003

1.7.6 CR-000013. Rename key classes, according to CEN ENV
13606.
CR-000026. Rename DV_QUANTITY.value to magnitude.
CR-000031. Change abstract NUMERIC to DOUBLE in
DV_QUANTITY.value.

S Heard, D
Kalra, T
Beale, A

Goodchild, Z
Tun

01 Oct 2003

1.7.5 CR-000022. Code TERM_MAPPING.purpose. G Grieve 20 Jun 2003

1.7.4 CR-000020. Move VERSION.charset to DV_TEXT, territory to
TRANSACTION. Remove VERSION.language.

A Goodchild 10 Jun 2003

1.7.3 DV_INTERVAL now inherits from INTERVAL to avoid duplicating
semantics. (Formally validated).

T Beale 25 Mar 2003

Issue Details Raiser Completed
Date of Issue: 12 Apr 2007 Page 4 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model
Rev 2.1.0
1.7.2 Minor corrections to diagrams in Text package. Improved head-
ing structure, package naming. Corrected error in TEXT package
diagram. Replaced TEXT_FORMAT_PROPERTY class with string
attribute of same form. Made MULTIMEDIA.media_type manda-
tory. (Formally validated).

T Beale,
Z Tun

21 Mar 2003

1.7.1 Moved definitions and assumed types to Support Reference
Model. No semantic changes.

T Beale 25 Feb 2003

1.7 Formally validated using ISE Eiffel 5.2.
CR-000001. Review of Data Types specification.
Made pluralities of Terminology name definitions (sect 3.2.1)
consistent.
Corrected types of DV_ENCAPSULATED.language, charset,
DV_MULTIMEDIA.integrity_check_algorithm,
compression_algorithm, media_type.
Corrected pluralities of Terminology name definitions (sect
3.2.1).
Corrected invariants of DV_ENCAPSULATED, DV_MULTI_MEDIA,
DV_QUANTITY, DV_CODED_TEXT, DV_TEXT, DV_INTERVAL,
TERM_MAPPING.
Corrected DV_TEXT.formatting; added TERM_MAPPING validity
function. Made DV_ORDINAL.limits an attribute. Removed
TERM_MAPPING.source; moved COORDINATED_TERM.language
to DV_TEXT; changed type to COOORDINATED_TERM.
Corrected time specification classes.

Z Tun,
T Beale

17 Feb 2003

1.6.1 Rome CEN TC 251 meeting. Updates to HL7 comparison
text. DV_DATE now inherits from DV_CUSTOMARY_QUANTITY.

S Heard,
T Beale

27 Jan 2003

1.6 Sam Heard complete review. Changed constant terminology
defs to runtime-evaluated set; removed DV_PHYSICAL_DATA.
Added new chapter for generic implementation guidelines, and
new section for assumed types. Post-conditions moved to invar-
iants: DV_TEXT.value, DV_ORDERED.is_simple,
DV_PARTIAL_DATE.probable_date, possible_dates,
DV_PARTIAL_TIME.probable_time, possible_times. Minor
updates to HL7 comparison text. Added explanation to HL7
section.

S Heard,
T Beale

13 Dec 2002

1.5.9 Minor corrections: DV_ENCAPSULATED; DV_QUANTITY.units
defined to be String; changed COORDINATED_TERM class (but
semantically equivalent).

T Beale 10 Nov 2002

1.5.8 Changed name of LINK package to URI. Major update to Text
cluster classes and explanation. Updated HL7 data type com-
parison.

T Beale,
D Kalra,
D Lloyd,

M Darlison

1 Nov 2002

1.5.7 DV_TEXT_LIST reverted to TEXT_LIST. DV_LINK no longer a data
types; renamed to LINK and moved to Common RM. Link pack-
age renamed to “URI”.

S Heard,
Z Tun,

T Beale,
D Kalra,

M Darlison

18 Oct 2002

1.5.6 Rewrite of TIME_SPECIFICATION parse specs. Adjustments to
DV_ORDINAL.

T Beale 16 Sep 2002

Issue Details Raiser Completed
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 5 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model
Rev 2.1.0
Acknowledgements
The work reported in this paper has been funded by a number of organisations, including The Univer-
sity College, London; The Cooperative Research Centres Program through the Department of the

1.5.5 Timezone not allowed on pure DV_DATE in ISO8601. T Beale,
S Heard

2 Sep 2002

1.5.4 Moved DV_QUANTIFIED.units and property attributes to
DV_QUANTITY. Introduced DV_WORLD_TIME.to_quantity. Added
fractional_second to DV_TIME, DV_DATE_TIME, DV_DURATION.

T Beale,
S Heard

29 Aug 2002

1.5.3 Further corrections - removed derived ‘/’ markers; renamed
TERM_MAPPING.granularity to match. Improved explanation of
DV_ORDINAL. DV_QUANTIFIED.units is now a DV_PARSABLE.
REFERENCE_RANGE.meaning is now a DV_TEXT.
DV_ENCAPSULATED.uri is now a DV_URI. DV_LINK.type is now a
DV_TEXT. Detailed review by Zar Zar Tun (DSTC).

T Beale,
S Heard,

P Schloeffel,
D Lloyd,

Z Tun

20 Aug 2002

1.5.2 Further corrections - removed derived ‘/’ markers; renamed
TERM_MAPPING.granularity to match.

T Beale,
D Lloyd,
S Heard

15 Aug 2002

1.5.1 Minor corrections. T Beale,
S Heard

15 Aug 2002

1.5 Rewrite of section describing text types; addition of new
attribute DV_CODED_TEXT.mappings. Removal of
TERM_REFERENCE.concept_code.

T Beale,
S Heard

1 Aug 2002

1.4.3 Minor changes to text. Corrections to DV_CODED_TEXT rela-
tionships. Made DV_INTERVAL.lower_unbounded and
DV_INTERVAL.upper_unbounded functions.

T Beale,
Z Tun

16 Jul 2002

1.4.2 DV_LINK.meaning changed to DV_TEXT (typo in table). Added
abstract class DV_WORLD_TIME.

T Beale,
D Lloyd

14 Jul 2002

1.4.1 Changes to DV_ENCAPSULATED, DV_PARSABLE invariants. T Beale
Z Tun

10 Jul 2002

1.4 DV_ENCAPSULATED. text_equivalent renamed to
DV_ENCAPSULATED.alternate_text. Added invariant for QUAN-
TITY.precision.

T Beale,
D Lloyd

1 Jul 2002

1.3 Added timezone to DV_TIME and DV_DATE_TIME and sign to
DV_DURATION; added linguistic_order to TERM_RELATION;
added as_display_string and as_canonical_string to all types.
Added DV_STATE.is_terminal. Renamed TERM_TEXT as
CODED_TEXT.

T Beale,
D Lloyd

30 Jun 2002

1.2 Minor corrections to Text package. T Beale 15 May 2002

1.1 Numerous small changes, including: term equivalents, relation-
ships and quantity reference ranges.

T Beale,
D Lloyd,

D Kalra, S
Heard

10 May 2002

1.0 Separated from the openEHR Reference Model. T Beale 5 May 2002

Issue Details Raiser Completed
Date of Issue: 12 Apr 2007 Page 6 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model
Rev 2.1.0
Prime Minister and Cabinet of the Commonwealth Government of Australia; Ocean Informatics,
Australia.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 7 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model
Rev 2.1.0
Date of Issue: 12 Apr 2007 Page 8 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model
Rev 2.1.0
Table of Contents
Copyright Notice ...2
Amendment Record ..3
Acknowledgements ...6
Table of Contents ..9

1 Introduction.. 13
1.1 Purpose...13
1.2 Related Documents ..13
1.3 Status..13
1.4 Peer review ..13
1.5 Conformance..13

2 Background .. 15
2.1 Scope..15
2.2 Design Criteria ...15
2.3 Prior Work..16

3 Introduction.. 17
3.1 Overview..17
3.2 Package Structure...17

4 Basic Package ... 18
4.1 Overview..18
4.1.1 Requirements ...18
4.1.2 Design ..19
4.2 Class Descriptions..19
4.2.1 DATA_VALUE Class ..20
4.2.2 DV_BOOLEAN Class...20
4.2.3 DV_STATE Class ..21
4.2.4 DV_IDENTIFIER Class..21

5 Text Package... 23
5.1 Overview..23
5.1.1 Requirements ...23
5.1.1.1 Narrative Text ...24
5.1.1.2 Terminological Entities ...24
5.1.2 Design ..25
5.1.3 Qualification ..26
5.1.4 Meaning Modification ...26
5.1.4.1 Mode-changing Terms ..26
5.1.4.2 Context Sensitivity ..26
5.1.4.3 Negation ..27
5.1.4.4 Representation of Meaning-Modifying Terms ...27
5.1.5 Mappings ...28
5.1.5.1 Classification (Broader Terms) ...28
5.1.5.2 Equivalent / Synonymous Terms ..29
5.1.5.3 More Specific Mappings (Narrower Terms) ...29
5.1.5.4 The Unified Medical Language System (UMLS)29
5.1.5.5 Legacy Mapping Scenarios ...30
5.1.6 Language Translations...30
5.2 Class Descriptions..30
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 9 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model
Rev 2.1.0
5.2.1 DV_TEXT Class ... 30
5.2.2 TERM_MAPPING Class .. 32
5.2.3 CODE_PHRASE Class ... 33
5.2.4 DV_CODED_TEXT Class ... 34
5.2.5 DV_PARAGRAPH Class.. 34

6 Quantity Package... 37
6.1 Overview ... 37
6.1.1 Requirements... 38
6.1.2 Design.. 40
6.2 Class Descriptions ... 43
6.2.1 DV_ORDERED Class... 43
6.2.2 DV_INTERVAL<T : DV_ORDERED> Class.............................. 45
6.2.3 REFERENCE_RANGE<T:DV_ORDERED> Class 45
6.2.4 DV_ORDINAL Class ... 46
6.2.5 DV_QUANTIFIED Class ... 47
6.2.6 DV_AMOUNT Class.. 48
6.2.7 DV_QUANTITY Class... 49
6.2.8 Units Syntax .. 50
6.2.9 DV_COUNT Class.. 51
6.2.10 DV_PROPORTION Class... 52
6.2.11 PROPORTION_KIND Class .. 53
6.2.12 DV_ABSOLUTE_QUANTITY Class.. 54

7 Date Time Package .. 55
7.1 Overview ... 55
7.1.1 Requirements... 55
7.1.2 Design.. 56
7.2 Class Descriptions ... 58
7.2.1 DV_TEMPORAL Class.. 58
7.2.2 DV_DATE Class ... 58
7.2.3 DV_TIME Class.. 59
7.2.4 DV_DATE_TIME Class ... 60
7.2.5 DV_DURATION Class ... 61

8 Time_specification Package .. 63
8.1 Overview ... 63
8.1.1 Requirements... 63
8.1.2 Design.. 64
8.2 Class Descriptions ... 64
8.2.1 DV_TIME_SPECIFICATION Class... 64
8.2.2 DV_PERIODIC_TIME_SPECIFICATION Class 65
8.2.2.1 Phase-linked Time Specification Syntax ..66
8.2.2.2 Event-linked Periodic Time Specification Syntax66
8.2.3 DV_GENERAL_TIME_SPECIFICATION Class........................ 66
8.2.3.1 General Time Specification Syntax ..67

9 Encapsulated Package ... 69
9.1 Overview ... 69
9.1.1 Requirements... 69
9.1.2 Design.. 70
Date of Issue: 12 Apr 2007 Page 10 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model
Rev 2.1.0
9.2 Class Descriptions..70
9.2.1 DV_ENCAPSULATED Class ...70
9.2.2 DV_MULTIMEDIA Class ..71
9.2.3 DV_PARSABLE Class..73

10 Uri Package .. 75
10.1 Overview..75
10.1.1 Requirements ...75
10.1.2 Design ..75
10.2 Definitions ...76
10.3 Class Descriptions..76
10.3.1 DV_URI Class ...76
10.3.2 DV_EHR_URI Class ...77
10.3.2.1 DV_EHR_URI Syntax ..78

11 Implementation Strategies .. 79
11.1 Overview..79
11.2 Quantities and Ordered_numeric ...79
11.3 Unicode..79
11.4 Dates and Times...80

12 Comparison with HL7v3 Types .. 81
12.1 Scope..81
12.2 Design Differences...81
12.2.1 Naming ..81
12.2.2 Identification..82
12.2.3 Archetyping ...82
12.2.4 Treatment of Inbuilt Types ..82
12.2.5 Use of Null Markers ..83
12.2.6 Terminology Approach..86
12.2.7 Date/Time Approach..86
12.2.8 Time Specification Types ..86
12.2.9 Type Conversions ..87

A References... 89
A.1 General...89
A.2 European Projects ..89
A.3 CEN ...89
A.4 GEHR Australia ...89
A.5 HL7 ..90
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 11 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model
Rev 2.1.0
Date of Issue: 12 Apr 2007 Page 12 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Introduction
Rev 2.1.0
1 Introduction

1.1 Purpose
This document defines the openEHR Data Types Information Model, used throughout the openEHR
Reference Model. The intended audience includes:

• Standards bodies producing health informatics standards;
• Software development organisations developing EHR systems;
• Academic groups studying the EHR;
• The open source healthcare community;
• Medical informaticians and clinicians intersted in health information;
• Health data managers.

1.2 Related Documents
Prerequisite documents for reading this document include:

• The openEHR Architecture Overview
• The openEHR Modelling Guide
• The openEHR Support Information Model

1.3 Status
This document is under development, and is published as a proposal for input to standards processes
and implementation works.

This document is available at http://svn.openehr.org/specification/TAGS/Release-
1.0.1/publishing/architecture/rm/data_types_im.pdf.

The latest version of this document can be found at http://svn.openehr.org/specifica-
tion/TRUNK/publishing/architecture/rm/data_types_im.pdf.

Blue text indicates sections under active development.

1.4 Peer review
Areas where more analysis or explanation is required are indicated with “to be continued” paragraphs
like the following:

To Be Continued: more work required

Reviewers are encouraged to comment on and/or advise on these paragraphs as well as the main con-
tent. Please send requests for information to info@openEHR.org. Feedback should preferably be
provided on the mailing list openehr-technical@openehr.org, or by private email.

1.5 Conformance
Conformance of a data or software artifact to an openEHR Reference Model specification is deter-
mined by a formal test of that artifact against the relevant openEHR Implementation Technology
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 13 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

mailto:info@gehr.org
mailto:openehr-technical@openehr.org
http://svn.openehr.org/specification/TAGS/Release-1.0.1/publishing/architecture/rm/data_types_im.pdf
http://svn.openehr.org/specification/TAGS/Release-1.0.1/publishing/architecture/rm/data_types_im.pdf
http://svn.openehr.org/specification/TRUNK/publishing/architecture/rm/data_types_im.pdf
http://svn.openehr.org/specification/TRUNK/publishing/architecture/rm/data_types_im.pdf

Introduction Data Types Information Model
Rev 2.1.0
Specification(s) (ITSs), such as an IDL interface or an XML-schema. Since ITSs are formal, auto-
mated derivations from the Reference Model, ITS conformance indicates RM conformance.
Date of Issue: 12 Apr 2007 Page 14 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Background
Rev 2.1.0
2 Background

2.1 Scope
The data type specification presented here defines the clinical/scientific data types which are used in
other openEHR models. Harmonisation of data types between information models used by related
services in a health information infrastructure is essential to reducing the conversion work and poten-
tial for errors between these services. Accordingly, the openEHR data type specification is intended to
work not only for the EHR, but also for other models defined by openEHR, such as the openEHR
demographic and terminological models.

The types described here have been derived from data types used in the GEHR [14], Synapses and
SynEx [10], CEN 13606 [11], [13] and the HL7v3 [15] reference models.

2.2 Design Criteria
Over and above the need to satisfy the functional requirements of clinical data, three concerns have
driven the design of the openEHR data types:

1. clarity of expression
2. ease of implementation
3. interoperability with data types from other standards

The first of these has led to models which try to clearly convey the semantics of types required by the
clinical domain. The use of constraints (pre- and post-conditions and class invariants) and a compre-
hensible class structure ensures formal self-consistency, correct type-substitutability and implementa-
bility in object-oriented formalisms. Types have been designed so as not to clash with norms of
object-oriented languages and libraries, in particular, class names and the inbuilt types. Accordingly,
all types presented here have a logical name commencing with ‘DV_’, ensuring that there is no clash
with a type in the implementation formalism, hence the type DV_DATE presented here will not be con-
fused with the type DATE which appears in many programming languages or libraries.

Object-oriented languages which have been considered include IDL, C++, Java, C#, Eiffel, Delphi
and Python. Each of these languages obeys some variant of the well-known semantics of classes,
encapsulation, typing and inheritance. The data types described here follow the tenets of object-orien-
tation defined in UML most closely, while being careful not to invalidate their implementation in any
language. The models have all been validated by implementation in the Eiffel language, the closest
available semantic fit for UML, and currently the most powerful of mainstream object-oriented for-
malisms.

Implementability in XML-schema has also been an important design criterion, and the current data
types remove many of the problems which the GEHR and CEN data types presented for XML-
schema. There has been no attempt to support XML-DTD, since it has no type system, and cannot
reliably be reasoned about in an object-oriented way.

To simplify implementation in all object-oriented formalisms, including IDL, programming lan-
guages and XML-schema, multiple inheritance has generally been avoided (where it is used, only onr
branch corresponds to substitutability). Generic classes have been used, since they significantly clar-
ify the model. Type genericity is available in Java, C#, Eiffel, C++, and some othre languages. For
languages not having it, there is a well-known transformation from models containing generic classes
to classes for non-generic types systems (see for example [3]).
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 15 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Background Data Types Information Model
Rev 2.1.0
Implementability in relational databases has also been considered, and appears relatively straightfor-
ward, since only the data view of the types needs to be represented. Many implementations are likely
to use only a single String or XML string to represent each entire data instance, which significantly
simplifies things.

2.3 Prior Work
Four other type systems for clinical data, namely the GEHR data types, the HL7 v3 data types, the
CEN 13606 data item types, and the Corbamed data types were carefully scrutinised in order to
ensure a) that all needed types were covered in the openEHR specification, and b) that data conver-
sion will be possible. Concepts from all three are cross-referenced throughout this specification where
possible.

Because the HL7v3 data type specification is a widely available and comprehensive specification for
clinican data types, particular attention has been paid to incorporating its semantics, as well as fixing
errors or shortcomings. While there are differences both in design approach and in detail, a significant
debt must be recognised to the authors of this work, from which many ideas in the present specifica-
tion were drawn. A detailed discussion is found under Comparison with HL7v3 Types on page 81.
Date of Issue: 12 Apr 2007 Page 16 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Introduction
Rev 2.1.0
3 Introduction

3.1 Overview
This specification describes a set of types suitable for use in scientific, clinical and related informa-
tion structures. In order for such types to exist, a set of primitive types is assumed, namely Integer,
Real, Boolean, Character, Octet, String, List<T>, Set<T>, and Array<T>. These have
standard definitions in the OMG object model used in UML, OCL, and are available in almost all
type systems. The exact assumptions are described in the openEHR Support Information Model. A
number of symbolic definitions (similar to constants in programming) are also described in the Sup-
port IM.

The data types described here are named with the class prefix “DV_”, and inherit from the class
DATA_VALUE. They have two distinct uses in reference models. Firstly, they may be used as ‘data val-
ues’ in reference model structures wherever the DATA_VALUE class appears, for example, in the EHR
Reference Model via the ELEMENT.value attribute. Additionally, specific subtypes of the data types
described here can also be used as attribute types in other classes in reference models, such as
date/times, coded terms and so on. The difference is that in the former case, only subtypes of
DATA_VALUE may be used, whilst in the latter case, other types may be used as well, from the
assumed set of basic types.

3.2 Package Structure
The package structure of the openEHR data types is illustrated in FIGURE 1.

FIGURE 1 openehr.rm.data_types Package

DATA_VALUE

date_time
quantity

text

encapsulated

basic time_specification uri

data_types
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 17 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Basic Package Data Types Information Model
Rev 2.1.0
4 Basic Package

4.1 Overview
The data_types.basic package, illustrated in FIGURE 2, contains types for the concepts of bi-
state, state (in a state machine) and real-world entity identifiers (see the openEHR Common IM for a
discussion on identifier types).

4.1.1 Requirements
Bi-state Values
One of the most basic types of data is boolean or bi-state data. The need here is for a type which both
includes a boolean value, and which inherits from the type DATA_VALUE, enabling it to be used as an
ELEMENT.value.

State Machine States
A type is required to represent state values of a state machine. In a simple system of data types, a sim-
ple integer would appear sufficient to perform this job. However, in an archetyped framework, a dis-
tinct type is required, so that it can be archetyped not by the constraints used for integers, but by a
state machine definition instead. The type DV_STATE is provided for this purpose. An example of a
state machine which models the lifecycle of a medication order is illustrated in FIGURE 3. This defi-
nition would appear in an archetype; the values of a DV_STATE object are then restricted to the values
of the states in the definition.

Real-world Entity Identification
Real world entities (RWEs) such as people, car engines, invoices, and appointments may all be
assigned identifiers. Although many of these are designed to be unique within a jurisdiction or issuing
space, they are often not, due to data entry errors, bad design (ids which are too small or incorporate
some non-unique characteristic of the identified entities), bad process (e.g. non-synchronised id issu-
ing points); identity theft (e.g. via theft of documents of proof or hacking). In general, while some real
world identifiers (RWIs) are “nearly unique”, none can be guaranteed so. Therefore, from a strict
computatoinal point of view, RWIs are not treated as reliable identifiers, but as attributes of their
owning objects, in the same ways as names and addresses for example.

basic

FIGURE 2 rm.data_types.basic Package

DV_BOOLEAN
value[1]: Boolean

DV_STATE
value[1]: DV_CODED_TEXT
is_terminal[1]: Boolean

DV_IDENTIFIER
issuer[1]: String
assigner[1]: String
id[1]: String
type[1]: String

DATA_VALUE

OPENEHR_DEFINITIONS
(support.definition)
Date of Issue: 12 Apr 2007 Page 18 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Basic Package
Rev 2.1.0
Examples of RWE identifiers which are intended to be unique within the space of the issuing author-
ity or organisation include:

• driver’s licence id
• social security number
• passport number
• prescription id

The defining logical characteristic of RWE ids is that they continue to identify the entities in question,
regardless of how they change in time; for example a social security number does not change when
someone changes their hair colour or even their gender (both of which attributes may be recorded in
the database). In general it should be the case that if two RWE ids are equal, they refer to the same
RWE.

At a practical level, RWE identifiers differ from information entity (IE) identifiers in that the former
are generally not assigned by the computing infrastructure that uses them - that is to say, in the pro-
duction computing system, such identifiers are no different from other characteristics of the entity,
such as names or addresses.

4.1.2 Design
The model defined here in the DV_IDENTIFIER class allows the recording of three things as part of
identifying an item of interest:

• the issuing authority of the kind of id used (e.g. it might be the federal department of health);
• the assigner of the id to the item being identified. This is usually the organisation which cre-

ated the item being identified;
• the identifier given to the item of interest.

In addition, the type of item being identified can also be recorded.

See the Support IM specification for a further discussion of RWEs and IEs, and the definition of IEs
in openEHR.

4.2 Class Descriptions

PROPOSED ORDERED IN_EXECUTION

CANCELLED SUSPENDEDOVERDUE

COMPLETED
order

suspendcancel, start_fail
supersede

cancel,
supersede

start finish

start

cancel

start

FIGURE 3 Example State Machine for Medication Orders

restart
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 19 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Basic Package Data Types Information Model
Rev 2.1.0
4.2.1 DATA_VALUE Class

4.2.2 DV_BOOLEAN Class

CLASS DATA_VALUE (abstract)

Purpose Serves as a common ancestor of all data value types in openEHR models.

ISO 18308 STR 3.1 - 3.13

CEN The Data_Item class in CEN is a mixture of DATA_VALUE and ELEMENT in
openEHR.

OMG HDTF COAS::ObservationValue

HL7 DataValue (ANY)

Invariants

CLASS DV_BOOLEAN

Purpose Items which are truly boolean data, such as true/false or yes/no answers.

Use For such data, it is important to devise the meanings (usually questions in subjec-
tive data) carefully, so that the only allowed results are in fact true or false.

MisUse
The DV_BOOLEAN class should not be used as a replacement for naively modelled
enumerated types such as male/female etc. Such values should be coded, and in
any case the enumeration often has more than two values.

ISO 18308 (none)

CEN Not provided as a subtype of Data Item

Synapses A special use of the Numeric class is defined to represent the Boolean data type,
limiting the permitted values to zero or one.

HL7 Boolean (BL) type. HL7 also allows NULL values. See section 12.2.5 on page 83.

Inherit DATA_VALUE

Attributes Signature Meaning

1..1 value: Boolean Boolean value of this item.

Invariants Value_exists: value /= Void
Date of Issue: 12 Apr 2007 Page 20 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Basic Package
Rev 2.1.0
4.2.3 DV_STATE Class

4.2.4 DV_IDENTIFIER Class

CLASS DV_STATE

Purpose For representing state values which obey a defined state machine, such as a vari-
able representing the states of an instruction or care process.

Use
DV_STATE is expressed as a String but its values are driven by archetype-
defined state machines. This provides a powerful way of capturing stateful com-
plex processes in simple data.

ISO 18308 (none)

CEN The Component Annotation Life Cycle was intended to permit architectural com-
ponents to include a reference to this aspect of state.

Synapses
The Element class includes an attribute LifeCycle to indicate the lifecycle of an
instruction or action, with permitted values taken from the ENV13606-2 Domain
Termlist Component Annotation of the same name.

Inherit DATA_VALUE

Attributes Signature Meaning

1..1

value: DV_CODED_TEXT The state name. State names are determined
by a state/event table defined in archetypes,
and coded using openEHR Terminology or
local archetype terms, as specified by the
archetype.

1..1

is_terminal: Boolean Indicates whether this state is a terminal
state, such as “aborted”, “completed” etc
from which no further transitions are possi-
ble.

Invariants value_exists: value /= Void
Is_terminal_exists: is_terminal /= Void

CLASS DV_IDENTIFIER

Purpose
Type for representing identifiers of real-world entities. Typical identifiers include
drivers licence number, social security number, vertans affairs number, prescrip-
tion id, order id, and so on.

Use DV_IDENTIFIER is used to represent any identifier of a real thing, issued by
some authority or agency.

Misuse
DV_IDENTIFIER is not used to express identifiers generated by the infrastruc-
ture to refer to information items; the types OBJECT_ID and OBJECT_REF and
subtypes are defined for this purpose.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 21 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Basic Package Data Types Information Model
Rev 2.1.0
ISO 18308 (none)

GEHR GEHR had a type PHYSICAL_DATA for the purpose of recording locations of
items, such as specimen bottles.

Inherit DATA_VALUE

Attributes Signature Meaning

1..1 issuer: String Authority which issues the kind of id used in
the id field of this object.

1..1 assigner: String Organisation that assigned the id to the item
being identified.

1..1
id: String The identifier value. Often structured,

according to the definition of the issuing
authority’s rules.

1..1
type: String The identifier type, such as “prescription”,

or “SSN”. One day a controlled vocabulary
might be possible for this.

Invariants

issuer_valid: issuer /= Void and then not issuer.is_empty
assigner_valid: assigner /= Void and then not assigner.is_empty
id_valid: id /= Void and then not id.is_empty
type_valid: type /= Void and then not type.is_empty

CLASS DV_IDENTIFIER
Date of Issue: 12 Apr 2007 Page 22 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Text Package
Rev 2.1.0
5 Text Package

5.1 Overview
The data_types.text package contains classes for representing all textual values in the health
record, including plain text, coded terms, and narrative text. It is illustrated in FIGURE 4.

5.1.1 Requirements
The sections below describe the requirements of text data types. Two overriding principles should be
noted at the outset with regard to text.

1. Regardless of what terminologies are (or are not) available to the clinician and/or the soft-
ware, the primary requirement is that in all cases clinicians are able to record exactly what
they want to say. This means that if they want to record something very general, such as
“cold” or a very specific term such as “Ross River virus infection” they should be able to,
whether or not the appropriate coded terms are available. However, the facility should be
available to additionally code any such textual item, at the time or indeed at some later time,
so as to satisfy reporting or other needs.

2. It is assumed that any client of terminology, such as the EHR, uses a terminology service
which provides a complete interface to the terminology. The design of the DV_CODED_TEXT
type reflects this. Accordingly, there is no concept of “post-coordination” outside the termi-
nology environment allowed by the data types described here: the only thing that is availa-
ble from the terminology service is a key which refers to a lexical entity, which may be a
single term or a code phrase, and which may be part of a reference terminology and/or
linked to element(s) of underlying ontologies. It is also assumed that there is no direct
access to any particular terminology; access to all terminologies (whether simple coded lex-
icons or large semantic networks) is via the same abstract interface.

Terminology Ids are likely to be of various types.

1. Terminology_Id = “local”: this constant value means that the origin of allowable values is
described within the archetype. This is coded to allow translation. The local archetype then
only needs the set of codes and the local translation. The archetype may contain a translation
table if required.

FIGURE 4 rm.data_types.text Package

CODE_PHRASE
terminology_id[1]:
TERMINOLOGY_ID
code_string[1]: String

DV_PARAGRAPH
 items

1..* DV_TEXT
value[1]: String
hyperlink[0..1]: DV_URI
formatting[0..1]: String

text

TERM_MAPPING
match[1]: Character
purpose[0..1]: DV_CODED_TEXT

target 1

DV_CODED_TEXT

 mappings
0..*

 defining_code 1

0..1
 language

0..1 encoding

coded by openEHR
codeset “languages”

coded by openEHR
codeset “character sets”

coded by openEHR
Terminology, group
“term mapping purpose”

DATA_VALUE
(rm.data_types.basic)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 23 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Text Package Data Types Information Model
Rev 2.1.0
2. Terminology_Id = “[authority]”. This might be “openehr”, “centc251”, “hl7”, etc;
3. The variant Terminology_Id = “[authority]:[Domain value set]” could also be supported,

although it should not generally be necessary, since all codes should be unique within a
given issuing authority. Examples might be “openehr:event math function”, “hl7:gender”;

4. Terminology_Id = “SNOMED-CT”, “ICD10AM”, etc. Idemtifiers of this kind must be
unique values in an accepted set of terminologies from an authoritative source. These
MUST be universally known. In openEHR, names from the US Natoinal Library of Medi-
cine’s UMLS terminology name list are used. See Support IM, terminology package for
details.

5.1.1.1 Narrative Text
Narrative text items are used in the EHR in a number of cases, including:

• values of coded attributes in the reference model;
• recording of subjective or imprecise patient responses, particularly quantities or dates not

deemed sufficiently precise to be represented using structured quantitative or date/time date
types;

• recording of narrative statements, e.g. visual observations;
• recording of tracts of prose, e.g. overall findings and conclusions, prognoses;
• recording of values that would normally be coded, but for which no code and/or no termi-

nology service is available.

While narrative text items themselves are not themselves coded, they may have code phrases associ-
ated with them, as described below under Mappings, and may be mixed within a paragraph with
coded items.

5.1.1.2 Terminological Entities
Textual entities available in a terminology service are used in the health record to enable processing,
from simple queries to decision support. Reasons for using terminology include the following.

• To guarantee interoperability of meaning. For instance, if the term “cold” is recorded in
plain text, it could be interpreted as “feeling cold”, “C.O.L.D” (chronic obstructive lung dis-
ease), “rhinorrhoea”, “coryza” or “U.R.T.I. (upper respiriatory tract infection), among oth-
ers. If, however, it is coded from a terminology such as ICD10 or SNOMED-CT, any party
reading the data (including software) knows the intention, since the meaning of the code in
the terminology is unambiguous.

• To standardise textual renderings of terms and avoid informal shorthand. For example, prac-
titioners wanting to write “systolic blood pressure” write things like “systolic BP”, “systolic
bp”, “sys. BP.” and so on; use of coded terms ensures that such abbreviations are either
avoided, or associated with an unambiguous meaning.

• For unambiguous naming of problems, medications or diagnoses for support of knowledge-
based tools such as prescribing packages and other decision support applications.

• For standardised names of things in the record e.g. a heading of “Physical examination” or
an entry such as “Differential diagnosis”.

• For finite sets of values (‘value sets’), e.g. Blood Group = ‘A|B|AB|O’.
• For classifying other data for the purpose of statistical studies, e.g. by putting ICD disease

group classifiers on actual disease names entered in health records.
Date of Issue: 12 Apr 2007 Page 24 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Text Package
Rev 2.1.0
A basic requirement for interoperability of text items, coded using terms (i.e. where the text is the
official rubric for the code), is that both the rubric and the code (or ‘code-phrase’) must be recorded,
to ensure the originally intended text is retained for receivers of EHR information who do not have
access to the terminologies used at the origin. However, where a terminology service is available, the
key can be used to unambiguously locate the string value of the term, and can also be used to find
translations in other languages. (Note that these comments do not apply to mappings, which are
described below).

In some terminologies, there are semantic networks of links emanating from most coded terms, which
classify them or relate them to other terms. Such links provide a means for decision support to make
inferences about specific things found in the record. For instance if the term “leukaemia” is found,
queries to the terminology service can be made in order to deduce that the patient has both a “cancer”
and a “disease of the immune system” (assuming leukaemia is classified under these more general
terms in the terminology).

This specification assumes the existence of a terminology service which is responsible for interrogat-
ing actual terminologies and performing validated coordination of terms, i.e. creating combinations
deemed valid by the underlying source terminology, potentially without even assigning a new code to
the result. All validated coordination is carried out inside the terminology service, and any “term”
made available by the service is already ‘coordinated’. The difference between ‘pre-coordinated’ and
‘post-coordinated’ terms is that the former have a single code, whereas the latter have a code phrase,
or expression that is interpretable by the terminology. For example, the coordination “foot, left” (a
shorthand way of writing the relationship “foot has-laterality left”) could be created by the terminol-
ogy service from the source terms “foot”, “left” and “has-laterality” from a terminology such as
SNOMED. Any such coordination must be valid within the source terminology, i.e. correspond to
valid relationships defined therein.

The class DV_CODED_TEXT described here captures the association of two things:

• the code phrase of a code phrase provided by the terminology service, recorded in the
defining_code attribute.

• the text rubric of the code phrase, recorded in the value attribute (inherited from DV_TEXT);

The class CODE_PHRASE.code_string records a key, in the form of arguments to some retrieval func-
tion in the terminology service interface.

The semantics attached to coordinations of terms may differ. Two categories of coordination
described in the literature are ‘qualification’ and ‘modification’. A common definition of the first is
that “qualification narrows meaning” - i.e. creates a new term whose possible real world instances are
within the set denoted by the original root term. Modification on the other hand changes the meaning
of a root term. Various cases are described below under Meaning Modification. Both coordination
types are assumed to be managed by the terminology service.

Coded terms may also be mapped to terms from other terminologies, which may be intended as equiv-
alents, classifiers, or something in between. The section below on Mappings deals with these.

5.1.2 Design
All atomic text items are either instances of the type DV_TEXT or of DV_CODED_TEXT. The former
allows the expression of text with optional formatting and hyperlinking. The latter additionally con-
nects the text value to a key in the terminology service, with the implication that the key refers to a
terminological entity lexically and semantically identical to the text value.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 25 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Text Package Data Types Information Model
Rev 2.1.0
The model of DV_CODED_TEXT is designed to capture the actual coded term chosen by the user or
software at runtime; it is implicitly assumed that this includes whichever synonym (term of equiva-
lent meaning from the same terminology) was chosen, for terminologies supporting synonyms, and
any coordination of underlying distinct terms. A DV_CODED_TEXT instance can only be used if the
final textual value chosen by the user is lexically identical to the rubric returned by the terminology
service for the key; if the user makes even the slightest change, the identity of rubric / key is lost, and
a mapping (see Mappings on page 28) should be used instead.

The type DV_TEXT should be used wherever a coded or non-coded text item is allowed, while the
type DV_CODED_TEXT should be used wherever a text item must be coded.

The type DV_PARAGRAPH allows larger tracts of text to be built up from lists of DV_TEXT instances,
i.e. instances of DV_TEXT and DV_CODED_TEXT, as illustrated in FIGURE 5.

5.1.3 Qualification
Qualification is the process of making a term more specific through the post-coordination of addi-
tional terms. It occurs when a terminology defines relationships between a primary term and other
terms that qualify the primary. For example a coordination using the term “bronchitis” which creates
a qualified term might be “acute bronchitis”; all real world instances of the latter are also instances of
the former.

5.1.4 Meaning Modification
Terms that change the meaning of other terms are often known as “modifiers”. The difference
between modification and qualification is that modifiers change the meaning so that the modifed term
as a whole does not refer to instances of the unmodified term. We describe below the particular types
of modifiers and how they are represented using the text data types.

5.1.4.1 Mode-changing Terms
One class of modifers is exemplified by the addition of words like “risk of”, “fear of”, “history of”
and so on. These are sometimes called mode-changing terms, since they change the “mode” of the
root term from the present to the past (“history of”), a potential future (“risk of”) or some other alter-
nate reality. Terms which are modified in this way should never be matched in queries searching for
the root term; for example, a query for “coronary diease” (of the patient) should not match “family
history of coronary disease”.

5.1.4.2 Context Sensitivity
There are many terms whose meaning is changed by the context in which they are stated, such as
within a certain kind of note or test result. Consider the following:

• a blood sugar level after a 75gm oral loading has a different meaning than a fasting blood
sugar;

FIGURE 5 A DV_PARAGRAPH

blah blah blah blah blah blah blah blah blah blah pneumonia, bronchial

terminology_id = snomed-ct

 blah

visible text DV_TEXT DV_CODED_TEXT

code_string = nnnnnnn

DV_TEXT DV_TEXT

defining_code

CODE_PHRASE
Date of Issue: 12 Apr 2007 Page 26 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Text Package
Rev 2.1.0
• a systolic blood pressure in the pulmonary artery has a different meaning than a systemic
arterial blood pressure;

• “total hip replacement” in the context of a “planned procedure";
• “meningitis” in the context of a “differential diagnosis”.

5.1.4.3 Negation
Negation is a special kind of mode change and has been a serious design challenge in the past,
because modifiers like “not” or “no” only make sense when attached to some terms, and create non-
sensical values or ambiguities by arbitrarily association with other terms.

5.1.4.4 Representation of Meaning-Modifying Terms
Rather than provide explicit features for representing modifier terms within DV_CODED_TEXT, the
general principle underlying representation of all post-coordinations other than qualifications, is that
a higher-level, archetyped structure such as an ENTRY (defined in the EHR RM), is a minimal indivis-
ible unit of information. Such higher-level entities can have internal structure, and it is possible (and
desirable) to achieve the effect of combinations of terms through this structure. In the case of ENTRY,
it will be via structuring of CLUSTER/ELEMENT objects. The general rule is: to obtain the full mean-
ing of any terms found in the record, all of the node names in any ENTRY (coded or not) must be con-
sidered from the root to the relevant leaf. Conversely, the “final” meaning of any term in the record
cannot be known in isolation from the rest of the terms in the structure.

Accordingly, the concept “family history of coronary disease” is represented as an ENTRY whose root
is named (for example) “subject family history”, and which includes further structure, which may be
in greater of lesser detail; the coded term “coronary disease” would appear somewhere in this struc-
ture. The actual structure is completely defined by appropriate archetypes. Contrary to some percep-
tions, there is no general way to represent concepts such as “family history of coronary disease”,
since it will vary depending on how much detail is recorded. Where some GPs routinely record just
the simplest form, others may record the details of which family members had heart problems and
exactly what they were.

The same approach is used for context-dependent terms. Archetypes defining contexts such as
“planned procedures” or “differential diagnosis” will use these terms as their root nodes; as a result,
the meaning of any term appearing below the root can only be understood by including the root. Once
again, the exact structures are completely dependent upon archetyping, and may be simple or quite
sophisticated.

Negations are more complex than might first be apparent and are best handled by good archetype
design. Terminologies might provide a term such as “No known allergies” which is helpful. But if
someone has an allergy of some sort, the medicolegal requirement might be to record that the person
has no known allergies to penicillin or another class of medication that is being prescribed. The often-
proposed approach of using a generic negation ‘modifier’ to deal with such issues results in further
problems. Consider the use of negation with liver - “no liver”, “no palpable liver”, “no liver disease”,
“no history of liver disease”, “no liver function”, “no liver function tests”. The meaning of negated
terms may be non-sensical and difficult to interpret.

A basic principle of dealing with negatives is to realise that most naïve suggested use cases are quite
ambiguous as stated. Does “no allergies” mean “no reported episode of allergy”, “no allergic reac-
tions ever”, “no known allergies to medication” or something else? Does it mean that these statements
are taken as given by the patient, or determined by tests? Like all medical phenomena, allergies must
be described in some detail for the EHR to be of any real use. Almost inevitably, this precludes the
use of negated terms. Since the actual information structure will be determined in advance by arche-
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 27 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Text Package Data Types Information Model
Rev 2.1.0
type designers, clinicians will almost never be in the situation of having to negate a term. However, if
the need does arise, it should be dealt with by a negative or quantitative answer, i.e. a value rather
than a name. For example, in any ENTRY describing current problems, the clinician may record the
name/value pair “allergies: NONE”. Here, “allergies” will be a DV_CODED_TEXT, and “NONE” will
be either a DV_CODED_TEXT or a DV_TEXT; the two will be associated by a containing object, such as
an instance of the ELEMENT class from the EHR RM. There is no explicit model of negation in
openEHR.

5.1.5 Mappings
In a number of circumstances, both plain text and coded text items are mapped to terms from other
terminologies. In theory, this should never occur, since it means that relationships between terms
which should only be knowable in the knowledge base (in the form of the terminology service, or
something else) are being created and transmitted as part of EHR information, potentially invalidating
or overriding the knowledge base. Where mappings are required, the proper approach is to create the-
sauri within the knowledge environment, and map through them. Unfortunately, in some cases, activ-
ities in the real world do not respect the information/knowledge boundary, hence the model described
here includes an explicit mapping concept, which itself includes a “purpose” and a “match” indicator.
Matching corresponds to the categories described below.

5.1.5.1 Classification (Broader Terms)
Any text item, whether coded or not, may be classified with a coded term, for research, reporting and
decision support purposes. For example, a GP working in tropical Australia may wish to write “Ross
River infection”, and be working with ICD9, which does not contain this term (although ICD9-CM
does). He or she will use a plain text item, but will still be able to map it to an ICD9 classifier, such as
the code for “arbovirus infection NOS”. The same approach can be used for adding a classifying term
to a coded text item. The utility of classifier terms is various: they allow decision support to make
more powerful inferences; in situations where the available terminologies do not provide the classifi-
cation inbuilt, and where it is known that not all users of EHR data will have terminologies available.
In data terms, classification mapping can be visualised as illustrated in FIGURE 6.

FIGURE 6 Plain Text and Coded Text with Classifier(s)

 blah blah Ross River infection blah blah blah

(rubric = arbovirus infection NOS)

terminology_id = icd9

bronchial pneumonia blah blah

(rubric = viral pneumonia)

visible text (“what the clinician said”)
DV_TEXT DV_CODED_TEXT

match = ‘>’
purpose = “epidemiology”

match = ’>’
purpose = “interoperability”

mappings

mappings
target

target

TERM_
MAPPING

defining_code

code_string = 066.9

terminology_id = icd9
code_string = 480

terminology_id = snomed-ct
code_string = 0000011

CODE_

TERM_
MAPPING

PHRASE

CODE_
PHRASE
Date of Issue: 12 Apr 2007 Page 28 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Text Package
Rev 2.1.0
Classifying mappings are represented by adding a term to the mappings list of the original term. Each
mapping is explicitly represented with an instance of TERM_MAPPING, which indicates both the term
being associated with the original text item, and a value of ‘>’ for the match attribute, which indicates
that the mapping is “broader”. The possible values of the match attribute are ‘>’ (broader), ‘<‘ (nar-
rower), and ‘=’ (equivalent); they are taken from the ISO standards 2788 (“Guide to Establishment
and development of monolingual thesauri”) and 5964 (“Guide to Establishment and development of
multilingual thesauri”).

5.1.5.2 Equivalent / Synonymous Terms
Data from pathology laboratories has often been coded using a terminology local to the laboratory,
due to lack of or economic unfeasibility of using existing widespread terminologies for the job. How-
ever, some laboratories also supply a nearest equivalent code from a well-known terminology such as
LOINC, to enable the receiver of the data to process it in a more standard fashion. Here, “equiva-
lence” is taken to mean a term of the same meaning but from a different vocabulary.

Another instance where equivalent terms might be supplied is to effect the translation of terms across
specialist vocabularies such as nursing vocabularies when sharing EHRs across jurisdictions.

In theory, the cleanest way for senders and receivers of data coded with both a local and a more stand-
ard equivalent to deal with the mapping problem is for the originator of the local terminology to pro-
vide a complete thesaurus of translations into one or more recognised terminologies. However, in
practice, laboratories using the HL7 v2.x messaging standard usually encode a primary term and
equivalents with the HL7 CE data type, meaning that equivalents are included only with the term they
are used with. A similar pragmatic approach to mapping equivalent terms in the EHR is likely to be
used with the data types described here, and can be effected with the same mapping approach as for
classification.

A further situation in which text values - this time plain text - is mapped to equivalent terms is when
natural language processing is used to generate coded terms for existing free-text prose. The aim of
such processing is to detect word phrases and associate them with a coded term of the same meaning,
without obliterating the original text. In this case, an instance of DV_CODED_TEXT is associated with
an instance of DV_TEXT via the mappings attribute.

In all cases with equivalents, the value of the match attribute is ‘=’, indicating that the mapping is a
synonym.

5.1.5.3 More Specific Mappings (Narrower Terms)
Occasionally, there is a need to create a mapping to a term of narrower meaning than the original text
item. Circumstances in which this occurs include when a clinician wants to record a syndrome such as
“croup” or “influenza”, but the terminology does not contain these general terms, although it does
contain more specific terms, e.g. “viral laryngo-tracheitis” or “influenza type A”. Clearly the clinician
should be allowed to record what he/she wants (as plain text if necessary), but it should also be possi-
ble to add a mapping to the more precise term. For mappings to narrower terms, the value of the
match attribute is ‘<’.

5.1.5.4 The Unified Medical Language System (UMLS)
It has been argued in GEHR [14] that UMLS reference terms should also be supplied with occur-
rences of coded terms, in the form of the UMLS concept unique identifier, or “CUI”. UMLS is a way
of encoding terms developed at the National Library of Medicine in the United States, and consists of
a meta-thesaurus, in which terms from any extant term set (such as ICD, SNOMED, READ) can be
cross-referenced. UMLS CUIs could turn out to be extremely useful for decision support and report-
ing.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 29 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Text Package Data Types Information Model
Rev 2.1.0
The proper use of UMLS is that terms from particular terminologies are passed to a UMLS interface
and a CUI + rubric received in response. However, the mapping approach described above could also
be used to map UMLS CUIs to existing text or terms in an EHR; in this case, a DV_CODED_TEXT is
constructed for each UMLS “term”, where the code is the CUI and the rubric is the text rendering of
the CUI (guaranteed unique in UMLS). The same approach can be used for any other thesaurus which
becomes available in the future.

5.1.5.5 Legacy Mapping Scenarios
In cases where legacy data has to be converted to openEHR-compliant data, and only codes are avail-
able, e.g. ICD or ICPC codes, the following approach is recommended:

• create a new DV_TEXT whose value is “(not available)”
• add a mapping to the DV_TEXT, with:

- purpose = “legacy conversion”
- match = “=”
- target = CODE_PHRASE object whose code_string and terminology_id are set to

correspond to the available code in the legacy data.

This expresses the reality that no text was ever recorded in the legacy system; rather a code was
recorded directly in the data field. In the converted data, this code is more correctly considered a map-
ping.

5.1.6 Language Translations
In most cases the natural language of a text object is known from the enclosing Entry (i.e. Observa-
tion) or other enclosing context. Where it is different (e.g. a german sentence within an English lan-
guage diagnosis), or there is no enclosing context, the DV_TEXT.language attribute can be set to
indicate the language of the text item.

5.2 Class Descriptions

5.2.1 DV_TEXT Class

CLASS DV_TEXT

Purpose

A text item, which may contain any amount of legal characters arranged as e.g.
words, sentences etc (i.e. one DV_TEXT may be more than one word). Visual for-
matting and hyperlinks may be included.

A DV_TEXT can be “coded” by adding mappings to it.

Use
Fragments of text, whether coded or not are used on their own as values, or to
make up larger tracts of text which may be marked up in some way, eventually
going to make up paragraphs.

ISO 18308 STR 2.6, 2.9

Synapses The Text data value class can contain either plain text or a term taken from a ter-
minology system (coding scheme).

HL7 Roughly equivalent to CWE (coded with extensions) - i.e. a text value which may
optionally be coded.
Date of Issue: 12 Apr 2007 Page 30 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Text Package
Rev 2.1.0
Inherit DATA_VALUE

Attributes Signature Meaning

1..1

value: String Displayable rendition of the item, regardless of its
underlying structure. For DV_CODED_TEXT, this is the
rubric of the complete term as provided by the termi-
nology service. No carriage returns, line feeds, or
other non-printing characters permitted.

0..1

mappings: List
<TERM_MAPPING>

terms from other terminologies most closely matching
this term, typically used where the originator (e.g.
pathology lab) of information uses a local terminology
but also supplies one or more equivalents from well-
known terminologies (e.g. LOINC).

0..1

formatting: String A format string of the form “name:value;
name:value...”, e.g. "font-weight : bold;
font-family : Arial; font-size : 12pt;".
Values taken from W3C CSS2 properties lists “back-
ground” and “font”.

0..1 hyperlink: DV_URI Optional link sitting behind a section of plain text or
coded term item.

0..1

language:
CODE_PHRASE

Optional indicator of the localised language in which
the value is written. Coded from openEHR Code Set
“languages”. Only used when either the text object is
in a different language from the enclosing ENTRY, or
else the text object is being used outside of an ENTRY
or other enclosing structure which indicates the lan-
guage.

0..1

encoding:
CODE_PHRASE

Name of character encoding scheme in which this
value is encoded. Coded from openEHR Code Set
“character sets”. Unicode is the default assumption in
openEHR, with UTF-8 being the assumed encoding.
This attribute allows for variations from these assump-
tions.

Invariants

Value_valid: value /= void and then not value.is_empty and then not
(value.has(CR) or value.has(LF))
Language_valid: language /= Void implies
code_set(Code_set_id_languages).has_code(language)
Encoding_valid: encoding /= Void implies
code_set(Code_set_id_character_sets).has_code(encoding)
Mappings_valid: mappings /= void implies not mappings.is_empty
Formatting_valid: formatting /= void implies not formatting.is_empty

CLASS DV_TEXT
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 31 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Text Package Data Types Information Model
Rev 2.1.0
5.2.2 TERM_MAPPING Class

CLASS TERM_MAPPING

Purpose

Represents a coded term mapped to a DV_TEXT, and the relative match of the tar-
get term with respect to the mapped item. Plain or coded text items may appear in
the EHR for which one or mappings in alternative terminologies are required.
Mappings are only used to enable computer processing, so they can only be
instances of DV_CODED_TEXT.

Use
Used for adding classification terms (e.g. adding ICD classifiers to SNOMED
descriptive terms), or mapping into equivalents in other terminologies (e.g.
across nursing vocabularies).

ISO 18308 STR 4.5

Attributes Signature Meaning

1..1 target: CODE_PHRASE The target term of the mapping.

1..1

match: Character The relative match of the target term with
respect to the mapped text item. Result
meanings:
• ‘>’: the mapping is to a broader term

e.g. orginal text = “arbovirus infec-
tion”, target = “viral infection”

• ‘=’: the mapping is to a (supposedly)
equivalent to the original item

• ‘<’: the mapping is to a narrower term.
e.g. original text = “diabetes”, mapping
= “diabetes mellitus”.

• ‘?’: the kind of mapping is unknown.
The first three values are taken from the
ISO standards 2788 (“Guide to Establish-
ment and development of monolingual the-
sauri”) and 5964 (“Guide to Establishment
and development of multilingual the-
sauri”).

1..1 purpose: DV_CODED_TEXT Purpose of the mapping e.g. “automated
data mining”, “billing”, “interoperability”

Functions Signature Meaning

narrower:Boolean
ensure
match = ‘<’ implies Result

The mapping is to a narrower term.
Date of Issue: 12 Apr 2007 Page 32 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Text Package
Rev 2.1.0
5.2.3 CODE_PHRASE Class

equivalent:Boolean
ensure
match = ‘=’ implies Result

The mapping is to an equivalent term.

broader:Boolean
ensure
match = ‘>’ implies Result

The mapping is to a broader term.

unknown:Boolean
ensure
match = ‘?’ implies Result

The kind of mapping is unknown.

is_valid_match_code(c: Charac-
ter):Boolean
ensure
Result := c = ‘>’ or c = ‘=’ or c =
‘<’ or c = ‘?’

True if match valid.

Invariants

Target_exists: target /= Void
Purpose_valid: purpose /= Void implies
terminology(Terminology_id_openehr).
has_code_for_group_id(Group_id_term_mapping_purpose, pur-
pose.defining_code)
Match_valid: is_valid_match_code(match)

CLASS CODE_PHRASE

Purpose A fully coordinated (i.e. all “coordination” has been performed) term from a ter-
minology service (as distinct from a particular terminology).

ISO 18308 STR 4.2

Attributes Signature Meaning

1..1
terminology_id:
TERMINOLOGY_ID

Identifier of the distinct terminology from
which the code_string (or its elements) was
extracted.

1..1

code_string: String The key used by the terminology service to
identify a concept or coordination of concepts.
This string is most likely parsable inside the ter-
minology service, but nothing can be assumed
about its syntax outside that context.

Invariants Terminology_id_exists: terminology_id /= Void
Code_string_exists: code_string /= Void and then not code_string.is_empty

CLASS TERM_MAPPING
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 33 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Text Package Data Types Information Model
Rev 2.1.0
5.2.4 DV_CODED_TEXT Class

5.2.5 DV_PARAGRAPH Class

CLASS DV_CODED_TEXT

Purpose

A text item whose value must be the rubric from a controlled terminology, the
key (i.e. the ‘code’) of which is the defining_code attribute. In other words: a
DV_CODED_TEXT is a combination of a CODE_PHRASE (effectively a code) and
the rubric of that term, from a terminology service, in the language in which the
data was authored.

Use
Since DV_CODED_TEXT is a subtype of DV_TEXT, it can be used in place of it,
effectively allowing the type DV_TEXT to mean “a text item, which may option-
ally be coded”.

Misuse
If the intention is to represent a term code attached in some way to a fragment of
plain text, DV_CODED_TEXT should not be used; instead use a DV_TEXT and a
TERM_MAPPING to a CODE_PHRASE.

ISO 18308 STR 4.1, 4.2, 4.3

CEN Text

OMG HDTF COAS::CodedElement, LooselyCodedElement.

Synapses Text

GEHR G1_TERM_TEXT

HL7 ConceptDescriptor (CD), CodedValue (CV) and CodedSimple (CS)

Inherit DV_TEXT

Attributes Signature Meaning

1..1 defining_code:CODE_PHRASE The term which the ‘value’ attribute is the
textual rendition (i.e. rubric) of.

Invariants Definition_exists: defining_code /= Void

CLASS DV_PARAGRAPH

Purpose
A logical composite text value consisting of a series of DV_TEXTs, i.e. plain text
(optionally coded) potentially with simple formatting, to form a larger tract of
prose, which may be interpreted for display purposes as a paragraph.

Use DV_PARAGRAPH is the standard way for constructing longer text items in summa-
ries, reports and so on.

ISO 18308 STR 2.6
Date of Issue: 12 Apr 2007 Page 34 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Text Package
Rev 2.1.0
FIGURE 7 illustrates the visual appearance of a typical DV_PARAGRAPH.

GEHR G1_PARAGRAPH

Inherit DATA_VALUE

Attributes Signature Meaning

1..1
items: List<DV_TEXT> Items making up the paragraph, each of

which is a text item (which may have its
own formatting, and/or have hyperlinks).

Invariants items_exists: items /= void and then not items.is_empty

CLASS DV_PARAGRAPH

FIGURE 7 PARAGRAPH visual structure

xxxxx xxxx xxx xxxxxxx xx xx xxxxxxx xxx xxxxxxxxx xxxx
xxxxxxxxxxxx xxxx xxx xxxxxx xxxxxxxxx xxxxxx xxxxx xxxxx xxxx
xxxxxx a xxxxxxx xxxx xxxxx xxxxx xxxxxxx xxxxxx x xxx
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 35 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Text Package Data Types Information Model
Rev 2.1.0
Date of Issue: 12 Apr 2007 Page 36 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Quantity Package
Rev 2.1.0
6 Quantity Package

6.1 Overview
The data_types.quantity package is illustrated in FIGURE 8. Dates and Times are found in the
next section.

FIGURE 8 rm.data_types.quantity Package

quantity

lower

upper

0..1

other_
0..*

ranges

1 range

REFERENCE_RANGE
<T:DV_ORDERED>
meaning[1]: DV_TEXT
is_in_range(v:T): Boolean

DV_ORDINAL
value[1]: Integer
symbol[1]: DV_CODED_TEXT
limits: REFERENCE_RANGE<..>

DV_QUANTIFIED
magnitude_status[0..1]: String
magnitude: Ordered_Numeric
valid_magnitude_status(...): Boolean

DV_QUANTITY
magnitude[1]: Double
precision[0..1]: Integer
units[1]: String
is_integral: Boolean

DV_ORDERED
normal_status[0..1]: CODE_PHRASE
is_strictly_comparable_to(...): Boolean
infix ‘<’ (other: like Current): Boolean
is_simple: Boolean
is_normal: Boolean

DV_INTERVAL<T:DV_ORDERED>

DV_DURATIONDV_COUNT
magnitude[1]: Integer

(rm.support.assumed)
INTERVAL<T>DATA_VALUE

(rm.data_types.basic)

coded by
archetype

reference_

0..1

range
normal_

DV_PROPORTION
numerator[1]: Real
denominator[1]: Real
type[1]: Integer
precision[0..1]: Integer
magnitude: Real
is_integral: Boolean

(rm.support.assumed)
Ordered

PROPORTION_KIND
const pk_ratio: Integer = 0
const pk_unitary: Integer = 1
const pk_percent: Integer = 2
const pk_fraction: Integer = 3
const pk_integer_fraction:
Integer = 4
valid_proportion_kind(n): Boolean

coded by openEHR
codeset “normal
statuses”

DV_AMOUNT
accuracy[0..1]: Real
accuracy_is_percent[0..1]: Boolean
prefix “-” (like Current): like Current
infix “+” (like Current): like Current
infix “-” (like Current): like Current

DV_ABSOLUTE_QUANTITY
accuracy[0..1]: like diff
add (other: like diff): like Current
subtract (other: like diff): like Current
diff (other: like Current): DV_AMOUNT

DATE_TIME

DV_DATE

DV_TIME

DV_DATE_TIME

DV_TEMPORAL
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 37 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Quantity Package Data Types Information Model
Rev 2.1.0
6.1.1 Requirements
Ordinal Values
Medicine is one domain in which symbols representing relative magnitudes are commonly used,
without exact values being known. The main purpose is usually to classify patients into groups for
which different decisions might be made. Thus, while approximate ranges (technically speaking -
“fuzzy intervals”) might be stated (such as for a urinalysis), concrete values are not of interest, only
categories are. Take for example the characterisation of pain as being “mild”, “medium”, “severe”, or
the reflex response to tendon percussion as “-”, “+/-”, “+”, “++”, ”+++”, “++++”. There may be no
way to scientifically precisely quantify such values because they reflect a subjective experience of the
patient or informal judgement by clinician. However, they are understood as being ordered, e.g. “++”
is ‘greater than’ “+”.

Similarly, even though the symbolic values for haemolysed blood in a urinalysis have approximate
ranges stated for them, as shown below, these ‘values’ are not usable in the same way as true quanti-
ties.

• “neg”, “trace” (10 cells/µl)
• “small” (<25 cells/µl)
• “moderate” (<80 cells/µl)
• “large” (>200 cells/µl)

A second requirement for ordinal values is that in many cases there is a need to associate integer val-
ues with the symbols, in order to facilitate ordered comparison, and also to enable longitudinal com-
parison across results of the same kind (e.g. pain, protein). Integer values may be negative, 0 and
positive, typically to allow the 0 value to correspond to a neutral value in a range.

[Note: an argument sometimes put forward for recording all ordinals in a more precise way is that
comparisons might want to be made between the values quoted by two laboratories for the same sym-
bol (e.g. “moderate”). There are a number of counter-arguments. Firstly, such comparisons are a poor
attempt at normalisation, an activity which is the business of pathologists, not EHR users. Secondly,
the symbolic values are often arrived at by the tester making a judgement of colour on a strip, which
while an adequate (and cost-effective) approach for classifying, is not a valid means of quantifying a
value. Lastly, in most cases, if a quantified point value or range is desired, or available, then it will be
used - meaning that the appropriate quantitative data type can be used, rather than an the ordinal
type.]

Countable Things
An common kind of data value in medicine is the dimensionless countable quantity, e.g. “number of
doses: 2”, “number of previous pregnancies: 1”, “number of tablets: 3”. Values of this type are always
integral. Countable values need to be convertible to real numbers for statistical purposes, for example
for a study of average number of pregnancies per couple.

Some countable entities such as tablets are divisible into major fractions, typically halves and occa-
sionally quarters.

Dimensioned Quantities
The most common kind of quantity is a measured, dimensioned quantity. Anything which is measura-
ble (rather than countable) involves a number of data aspects, namely:

• a magnitude whose value is a real number;
• the physical property being measured, with the appropriate units;
Date of Issue: 12 Apr 2007 Page 38 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Quantity Package
Rev 2.1.0
• a concept of precision, i.e. to what number of decimal places the value is recorded;
• a concept of accuracy, i.e. the known or assumed error in the measurement due to instru-

mentation or human judgement.

Examples of dimensioned quantities include:

• systolic BP: 110 mmHg
• height: 178 cm
• rate of asthma attacks: 7 /week
• weight loss: 2.5 kg

Ratios and Proportions
A common quantitative type in science and medicine is the proportion, or ratio, which is used in situ-
ations like the following:

• 1:128 (a titer);
• Na:K concentration ratio (unitary denominator);
• albumin:creatinine ratio;
• % e.g. red cell distribution width (RDW) which is the width of a distribution of RBC widths.

In general ratios have real number values, even if many examples appear to be integer ratios. Propor-
tions with unitary denominator and % (denominator = 100) are common.

Formulations
A concept superficially similar to proportions and ratios is formulations of materials, such as a solid
in a liquid e.g.:

• 250 mg / 500 ml (solute/solvent)

Although a single solute/single solvent formulation appears to have the same form as a ratio, the gen-
eral form is for any number of substances to be mixed together, usually according to a particular pro-
cedure. Formulations are therefore not candidates for direct modelling as fine-grained quantities, but
instead are constructed by archetyping a higher-level structure, each leaf element of which contains
the required kind of Quantity.

Quantity Ranges
Quantity ranges are ubiquitous in science and medicine, and may be defined for any kind of measured
phenomenon. Examples include:

• healthy weight range, e.g. 48kg - 60kg
• normal range for urinalysis in pregnancy - protein, e.g. “nil” - “trace”

Reference Ranges
A reference range is a quantity range attached to a measured value, and is common for laboratory
result values. The typical form of a reference range found in a pathology result indicates what is con-
sidered the ‘normal’ range for a measured value. Examples of reference ranges:

• normal range for serum Na is 135 - 145 mmol/L.
• desirable total cholesterol: < 5.5 mmol/L (strictly this probably should be 2.0 - 5.5 mmol/L,

but is not usually quoted this way as low cholesterol is not considered a problem.)

Ranges can also be quoted for drug administrations, in which case they are usually thought of as the
‘therapeutic’ range. For example, the anticonvulsant drug Carbamazepine has a therapeutic range of
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 39 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Quantity Package Data Types Information Model
Rev 2.1.0
20 - 40 µMol/L. In some cases, there are multiple ranges associated with a drug, for example, Sali-
cylate has a therapeutic range of 1.0 - 2.5 mmol/L and a toxic range > 3.6 mmol/L

Various examples occur in which multiple ranges may be stated, including the following.

• The administration recomendations for drugs which depend on the particular patient state.
For example, the therapeutic range of Cyclosporin (an immunosuppresant) is a function of
time post-transplant for the affected organ, e.g. kidney: < 6 months: 250 - 350 µg/L, > 6
months: 100 - 200 µg/L.

• Normal ranges for blood IgG, IgA, IgM which vary significantly with the age in months
from birth.

• Progesterone and pituitary hormones have ranges which are different for different phases of
the menstrual cycle and for menopause. This may result in 4 or 5 ranges given for one result.
Only one will apply to any particular patient - but the exact phase of the cycle may be
unknown - so the ranges may need to be associated with the value with no 'normal' range.

Where there are multiple ranges, the important question is: which range information is relevant to the
actual data being recorded for the patient? In theory, only the range corresponding to the particular
patient situation should be used, i.e. the range which applies after taking into account sex, age, smok-
ing status, “professional athlete”, organ transplanted, etc. In most cases, this is a single “normal”
range, or a pair of ranges, typically “therapeutic” and “critical”. However, practical factors compli-
cate things. Firstly, data is sometimes supplied from pathology labs along with some or all of the
applicable reference ranges, even though only some could possibly apply. This is particularly the case
if the laboratory has no other data on the patient, and cannot evaluate which range applies. The
requirement for faithfulness of recording might be extended to reference data supplied by laborato-
ries, regardless of how irrelevant or arbitrarily chosen the reference data is, meaning that such data
has to be stored in the record anyway. Secondly, there may be circumstances in which physicians
want a number of reference ranges, even while knowing that only one range is applicable to the
datum. Ranges above and below the relevant one might be useful to a physician wishing to determine
how far out of range the datum is.

Normal Range and Status in Laboratory data
It is quite common for laboratories to include a normal range with each measured value, and/or a nor-
mal ‘status’, which indicates where the value lies with respect to the normal range. The latter will
commonly take the form of markers like “HHH” (critically high), HH (abnormally high), H (border-
line high), L, LL, LLL in HL7v2 messaging, although other schemes are undoubtedly used.

6.1.2 Design
Basic Semantics
In order to make sense of the requirements in a systematic way, a proper typology for quantities is
needed. The most basic characteristic of all values typically called ‘quantities’ is that they are
ordered, meaning that the operator “<” (less-than) is defined between any two values in the domain.
An ancestor class for all quantities called DV_ORDERED is accordingly defined. This type is subtyped
into ordinals and true quantities, represented by the classes DV_ORDINAL and DV_QUANTIFIED
respectively. DV_ORDINAL represents data values whose exact numeric values are not known, and
which use symbolic renderings instead, such as “+”, “++”, “+++”, or “mild”, “medium”, “severe”.
Each symbol can be assigned any integer value, providing a basis for computable comparison. In con-
trast, instances of DV_QUANTIFIED and all its subtypes have precise numeric magnitudes.
Date of Issue: 12 Apr 2007 Page 40 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Quantity Package
Rev 2.1.0
DV_QUANTIFIED itself introduces the concepts of magnitude and magnitude_status. The magnitude
attribute is guaranteed to be available on any DV_QUANTIFIED, carrying the effective value, regard-
less of the particular subtype. The optional magnitude_status attribute can be used to provide a non-
quantified indication of accuracy, and takes the following values:

• “=” : magnitude is a point value
• “<“ : value is < magnitude
• “>” : value is > magnitude
• “<=” : value is <= magnitude
• “>=” : value is >= magnitude
• “~” : value is approximately magnitude

If not present, meaning is “=”.

Logically, an accuracy attribute should also be included in DV_QUANTIFIED, but as its modelling is
different in the subtypes in a way that does not easily lend itself to a common ancestor, it is only
included in the subtypes.

The DV_QUANTIFIED class has two subtypes: DV_AMOUNT and DV_ABSOLUTE_QUANTITY. The
former corresponds to relative ‘amounts’ of something, either a physical property(such as mass) or
items (e.g. cigarettes). Mathematically, the ‘+’ and ‘-’ operators (as well as ‘*’ and ‘/’) are defined in
the same way as for the real numbers (or any other mathematical ‘field’), with the semantics that add-
ing two relative quantities measuring the same thing (i.e. with the same units) produces another rela-
tive quantity of the same kind; while the semantics of subtraction are that one relative quantity
subtracted from another generates a third.

The second subtype of DV_QUANTIFIED, DV_ABSOLUTE_QUANTITY, models quantities whose val-
ues are absolute along a line having a defined origin. The main example of absolute quantities are the
temporal concepts date, time and date/time. These are distinguished from relative quantities in that
the normal addition and subtraction operations don’t apply. Instead, the semantics of such operators
are based on the idea of the difference between absolute values being a relative amount. For example,
two dates can be subtracted, but the result is a duration, not another date. For this reason, the opera-
tions add, subtract and diff are defined rather than ‘+’ or ‘-’. Date/time types, as well as the relative
concept duration, are defined in the Date Time Package on page 55.

Subtypes of DV_AMOUNT are DV_PROPORTION, DV_QUANTITY, DV_COUNT, and DV_DURATION (see
date_time package). The type DV_COUNT has an integer magnitude and is used to record naturally
countable things such as number of previous pregnancies, number of steps taken by a recovering
stroke victim and so on. There are no units or precision in a DV_COUNT. Countable quantities can be
used to create instances of DV_QUANTITY, such as during a statistical study which average tobacco
consumption over a time period. Such a computation might cause the creation of DV_QUANTITY
objects representing values like {magnitude = 5.85, units = ‘/ week’}

DV_QUANTITY is used to represent amounts of measurable things, and has a real number magnitude,
precision, units and accuracy. The units attribute contains the scientific unit in a parsable form
defined by the Unified Code for Units of Measure (UCUM) [8]. A valid units string always implies a
measured property, such as “force” or “pressure”. The property of a Quantity can conveniently con-
strained in archetypes, e.g. to “pressure”, which would allow any pressure unit. Unit strings can be
compared to determine if they measure the same property (e.g. “bar” and “kPa” are both units corre-
sponding to the property “pressure”), which enables the is_strictly_comparable_to function defined
on DV_ORDERED to be properly specified on DV_QUANTITY.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 41 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Quantity Package Data Types Information Model
Rev 2.1.0
It is important to note that while these semantics will allow comparison of e.g. two pressures
recorded in mbar and mmHg, or even two accelerations whose units are “m.s^-2” and “m/s^2”, they
provide no guarantee that this is a sensible thing to do in terms of domain semantics: comparing a
blood pressure to an atmospheric pressure for example may or may not make any sense. It is not
within the scope of the quantity package to express such semantics: this is up to application soft-
ware which uses Quantities found in specific places in the data.

Accuracy and Uncertainty
Theoretically it might be argued that ‘accuracy’ should not be included in a model for quantified val-
ues, because it is an artifact of a measuring process and/or device, not of a quantity itself. For exam-
ple, a weight of “82 kg +/-5%” can be represented in two parts. The “82 kg” is represented as a
DV_QUANTITY, while the “+/-5%” may be included in the protocol description of the weighing instru-
ment, since this is where the error comes from. For practical purposes however, (in)accuracy in a
measured quantity corresponds to a range of possible values. In realistic computing in health, it is
quite likely that the accuracy will be required in computations on the quantity, especially for statisti-
cal population queries in which measurement error must be disambiguated from true correlation.
Accuracy is therefore included as an attribute of DV_AMOUNT, where it is of type Real (if no accuracy
recorded its value is 0), and DV_ABSOLUTE_QUANTITY, where it is of a differential type defined by
subtypes (no accuracy recorded corresponds to a Void accuracy attribute).

The related notion of “uncertainty” is understood as a subjective judgement made by the clinician,
indicating that he/she is not certain of a particular statement. It is not the same as accuracy: uncer-
tainty may apply to non-quantified values, such as subjective statements, and it is not an aspect of
objective measurement processes, but of human confidence. Where the uncertainty is due to subjec-
tive memory e.g. “I think my grandfather was 56 when he died”, the uncertainty is simply recorded as
another value, along with the main data item being recorded. Uncertainty is therefore not directly
modelled in the openEHR data types, but appears instead in particular archetypes.

Quantity Ranges
Ranges are modelled by the generic type DV_INTERVAL<T:DV_ORDERED> which enables a range of
any of the other quantity types (except ratio) to be constructed. This allows any subtype of
DV_ORDERED to occur as a range as well.

Proportions
The DV_PROPORTION type is provided for representing true ratios, i.e. relative values, and consists
of numerator and denominator Real values, and a magnitude function which is computed as the result
of the numerator/denominator division. The type attribute is used to indicate the logical type of the
proportion. Supported types include:

• percent: denominator is 100; usual presentation is “numerator %”
• unitary: denominator is 1; usual presentation is “numerator”
• fraction: numerator and denominator are both integer values; usual presentation is n/d, e.g.

such as ½ or ¾, 1/2, 3/4 etc;
• integer_fraction: numerator and denominator are both integer values; usual presentation is

n/d; if numerator > denominator, display as “a b/c”, i.e. the integer part followed by the
remaining fraction part, e.g. 1½; this is the most likely form for expressing a number of tab-
lets;

• ratio: numerator and denominator can take any value; usual presentation is “numera-
tor:denominator”
Date of Issue: 12 Apr 2007 Page 42 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Quantity Package
Rev 2.1.0
Lastly, the is_integral function indicates that the numerator and denominator are both integer values;
this is used for fractions (the fraction and integer_fraction types above) and other commonly occur-
ring ratios where both parts are always integer values.

Normal and Reference Ranges
Normal range for any of the quantity types (i.e. any instance of a subtype of DV_ORDERED) can be
included via the attribute DV_ORDERED.normal_range, of type REFERENCE_RANGE. Other reference
ranges (e.g. subcritical, critical etc) can be included via the attribute
DV_ORDERED.other_reference_ranges. The separation of normal and other reference range attributes
is used because the former constitute the vast majority of ranges quoted for quantitative data.

Normal status can be included via the attribute DV_ORDERED.normal_status, which takes the form of
a DV_ORDINAL, whose symbol atttribute is coded according to the openEHR terminology group “nor-
mal status”, and takes values “HHH” (critically high), “HH” (abnormally high), “H” (borderline
high)”, “N” (normal), “L” ... “LLL”.

Recording Time
Time can be recorded in two ways. Absolute times in the social time domain, such as dates and time
of day are recorded using the types in the date_time package. Fine-grained ‘time’, which is a dura-
tion rather than a time, is recorded using a DV_QUANTITY with units = ‘s’ or another temporal unit
(‘h’, ‘ms’, ‘ns’ etc).

6.2 Class Descriptions

6.2.1 DV_ORDERED Class

CLASS DV_ORDERED (abstract)

Purpose

Abstract class defining the concept of ordered values, which includes ordinals as
well as true quantities. It defines the functions ‘<’ and is_strictly_comparable_to,
the latter of which must evaluate to True for instances being compared with the
‘<’ function, or used as limits in the DV_INTERVAL<T> class.

Use

Data value types which are to be used as limits in the DV_INTERVAL<T> class
must inherit from this class, and implement the function
is_strictly_comparable_to to ensure that instances compare meaningfully. For
example, instances of DV_QUANTITY can only be compared if they measure the
same kind of physical quantity.

Inherit DATA_VALUE, Ordered

Abstract Signature Meaning

infix ‘<’ (other: like Current):
Boolean
require
is_strictly_comparable_to(other)

Tests if this item is less than other, which
must be of the same concrete type.

is_strictly_comparable_to (other: like
Current): Boolean

Test if two instances are strictly compa-
rable.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 43 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Quantity Package Data Types Information Model
Rev 2.1.0
Attributes Signature Meaning

0..1 normal_range: DV_INTERVAL<like
Current>

Optional normal range.

0..1
other_reference_ranges: List
<REFERENCE_RANGE<like Current>>

Optional tagged other reference ranges
for this value in its particular measure-
ment context

0..1

normal_status: CODE_PHRASE Optional normal status indicator of value
with respect to normal range for this
value. Often included by lab, even if the
normal range itself is not included.
Coded by ordinals in series HHH, HH,
H, (nothing), L, LL, LLL; see openEHR
terminology group “normal status”.

Functions Signature Meaning

is_normal: Boolean
require
normal_range /= Void or
normal_status /= Void
ensure
normal_range /= Void implies Result
= normal_range.has(Current)
normal_status /= Void implies
normal_status.code_string.is_equal(“
N”)

Value is in the normal range, determined
by comparison of the value to the
normal_range if present, or by the
normal_status marker if present.

is_simple: Boolean True if this quantity has no reference
ranges.

Invariants

Other_reference_ranges_validity: other_reference_ranges /= Void implies not
other_reference_ranges.is_empty
Is_simple_validity: (normal_range = Void and other_reference_ranges = Void)
implies is_simple
Normal_status_validity: normal_status /= Void implies
code_set(Code_set_id_normal_statuses).has_code(normal_status)
Normal_range_and_status_consistency: (normal_range /= Void and
normal_status /= Void) implies (normal_status.code_string.is_equal(“N”) xor
not normal_range.has(Current))

CLASS DV_ORDERED (abstract)
Date of Issue: 12 Apr 2007 Page 44 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Quantity Package
Rev 2.1.0
6.2.2 DV_INTERVAL<T : DV_ORDERED> Class

6.2.3 REFERENCE_RANGE<T:DV_ORDERED> Class

CLASS DV_INTERVAL<T : DV_ORDERED>

Purpose Generic class defining an interval (i.e. range) of a comparable type. An interval is
a contiguous subrange of a comparable base type.

Use

Used to define intervals of dates, times, quantities (whose units match) and so on.
The type parameter, T, must be a descendant of the type DV_ORDERED, which is
necessary (but not sufficient) for instances to be compared (strictly_comparable
is also needed).

Without the DV_INTERVAL class, quite a few more DV_ classes would be needed
to express logical intervals, namely interval versions of all the date/time classes,
and of quantity classes. Further, it allows the semantics of intervals to be stated in
one place unequivocally, including the conditions for strict comparison.

The basic semantics are derived from the class INTERVAL<T>, described in the
support RM.

ISO 18308 STR 3.13

CEN Time Interval; also includes a measurement range data type but not the ability to
specify if minimum or maximum values are inclusive.

Synapses QuantityRange + ability to specify if the range is inclusive or exclusive separately
of the maximum and minimum values.

GEHR G1_QUANTITY_RANGE

HL7 IVL<T:QTY>

Inherit DATA_VALUE, INTERVAL<T>

Invariants Limits_consistent: (not upper_unbounded and not lower_unbounded) implies
(lower.is_strictly_comparable_to(upper) and lower <= upper)

CLASS REFERENCE_RANGE<T:DV_ORDERED>

Purpose
Defines a named range to be associated with any ORDERED datum. Each such
range is particular to the patient and context, e.g. sex, age, and any other factor
which affects ranges.

Use May be used to represent normal, therapeutic, dangerous, critical etc ranges.

ISO 18308 STR 3.13

Attributes Signature Meaning
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 45 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Quantity Package Data Types Information Model
Rev 2.1.0
6.2.4 DV_ORDINAL Class

1..1
meaning: DV_TEXT Term whose value indicates the mean-

ing of this range, e.g. “normal”, “criti-
cal”, “therapeutic” etc.

1..1 range: DV_INTERVAL<T> The data range for this meaning, e.g.
“critical” etc.

Functions Signature Meaning

is_in_range (val: T): Boolean Indicates if the value ‘val’ is inside the
range

Invariants

Meaning_exists: meaning /= Void
Range_exists: range /= Void
Range_is_simple: (range.lower_unbounded or else range.lower.is_simple) and
(range.upper_unbounded or else range.upper.is_simple)

CLASS DV_ORDINAL

Purpose

Models rankings and scores, e.g. pain, Apgar values, etc, where there is a)
implied ordering, b) no implication that the distance between each value is con-
stant, and c) the total number of values is finite. Note that although the term
‘ordinal’ in mathematics means natural numbers only, here any integer is
allowed, since negative and zero values are often used by medical professionals
for values around a neutral point. Examples of sets of ordinal values:

-3, -2, -1, 0, 1, 2, 3 -- reflex response values

0, 1, 2 -- Apgar values

Use

Used for recording any clinical datum which is customarily recorded using sym-
bolic values. Example: the results on a urinalysis strip, e.g. {neg, trace, +,
++, +++} are used for leucocytes, protein, nitrites etc; for non-haemolysed
blood {neg, trace, moderate}; for haemolysed blood {neg, trace,
small, moderate, large}.

ISO 18308 STR 3.2

HL7 Quantity (QTY)

Inherit DV_ORDERED

Attributes Signature Meaning

1..1 value: Integer Value in ordered enumeration of values. Any
integer value can be used.

CLASS REFERENCE_RANGE<T:DV_ORDERED>
Date of Issue: 12 Apr 2007 Page 46 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Quantity Package
Rev 2.1.0
6.2.5 DV_QUANTIFIED Class

1..1

symbol: DV_CODED_TEXT Coded textual representation of this value in
the enumeration, which may be strings made
from “+” symbols, or other enumerations of
terms such as “mild”, “moderate”, “severe”,
or even the same number series as the values,
e.g. “1”, “2”, “3”. Codes come from arche-
type.

Functions Signature Meaning

limits: REFERENCE_RANGE
<DV_ORDINAL>

limits of the ordinal enumeration, to allow
comparison of an ordinal value to its limits.

infix ‘<’ (other: like Current):
Boolean
ensure
value < other.value implies
Result

True if types are the same and values com-
pare

is_strictly_comparable_to
(other: like Current): Boolean
ensure
symbol.is_comparable
(other.symbol) implies Result

True if symbols come from same vocabulary,
assuming the vocabulary is a subset or value
range, e.g. “urine:protein”.

Invariants

Symbol_exists: symbol /= Void
Limits_valid: limits /= Void and then limits.meaning.is_equal(“limits”)
Reference_range_valid: other_reference_ranges /= Void and then
other_reference_ranges.has(limits)

CLASS DV_QUANTIFIED (abstract)

Purpose Abstract class defining the concept of true quantified values, i.e. values which are
not only ordered, but which have a precise magnitude.

OMG HDTF COAS::Measurement.

Synapses Attributes in the Quantity class for unit and accuracy (double plus units)

HL7 Quantity (QTY)

Inherit DV_ORDERED

Abstract Signature Meaning

CLASS DV_ORDINAL
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 47 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Quantity Package Data Types Information Model
Rev 2.1.0
6.2.6 DV_AMOUNT Class

magnitude: Ordered_Numeric Numeric value of the quantity in canonical
(i.e. single value) form. Implemented as con-
stant, function or attribute in subtypes as
appropriate. The type Ordered_numeric is
mapped to the available appropriate type in
each implementation technology.

Attributes Signature Meaning

0..1

magnitude_status: String Optional status of magnitude with values:
• “=” : magnitude is a point value
• “<“ : value is < magnitude
• “>” : value is > magnitude
• “<=” : value is <= magnitude
• “>=” : value is >= magnitude
• “~” : value is approximately magnitude
If not present, meaning is “=”.

Functions Signature Meaning

valid_magnitude_status
(s: String): Boolean
ensure

Result = s.is_equal(“=”) or
s.is_equal(“<”) or
s.is_equal(“>”) or
s.is_equal(“<=”) or
s.is_equal(“>=”) or
s.is_equal(“~”)

Test whether a string value is one of the valid
values for the magnitude_status attribute.

Invariants
Magnitude_exists: magnitude /= Void
Magnitude_status_valid: magnitude_status /= Void implies
valid_magnitude_status(magnitude_status)

CLASS DV_AMOUNT (abstract)

Purpose
Abstract class defining the concept of relative quantified ‘amounts’. For relative
quantities, the ‘+’ and ‘-’ operators are defined (unlike descendants of
DV_ABSOLUTE_QUANTITY, such as the date/time types).

Inherit DV_QUANTIFIED

Abstract Signature Meaning

CLASS DV_QUANTIFIED (abstract)
Date of Issue: 12 Apr 2007 Page 48 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Quantity Package
Rev 2.1.0
6.2.7 DV_QUANTITY Class

prefix ‘-’: like Current Negated version of current object, such as
used for representing a difference, e.g. a
weight loss.

infix ‘+’ (other: like Cur-
rent): like Current

Sum of this quantity and another whose for-
mal type must be the difference type of this
quantity.

infix ‘-’ (other: like Current):
like Current

Difference of this quantity and another
whose formal type must be the difference
type of this quantity type.

Attributes Signature Meaning

0..1

accuracy: Real Accuracy of measurement, expressed either
as a half-range percent value
(accuracy_is_percent = True) or a half-range
quantity. A value of 0 means that accuracy
was not recorded.

0..1
accuracy_is_percent: Boolean If True, indicates that when this object was

created, accuracy was recorded as a percent
value; if False, as an absolute quantity value.

Functions Signature Meaning

valid_percentage
(val: Numeric): Boolean
ensure
Result implies val >= 0.0 and

val <= 100.0

Test whether a number is a valid percentage,
i.e. between 0 and 100.

Invariants Accuracy_is_percent_validity: accuracy = 0 implies not accuracy_is_percent
Accuracy_validity: accuracy_is_percent implies valid_percentage(accuracy)

CLASS DV_QUANTITY

Purpose

Quantitified type representing “scientific” quantities, i.e. quantities expressed as a
magnitude and units.

Units were inspired by the Unified Code for Units of Measure (UCUM), devel-
oped by Gunther Schadow and Clement J. McDonald of The Regenstrief Institute
[8].

Use Can also be used for time durations, where it is more convenient to treat these as
simply a number of seconds rather than days, months, years.

ISO 18308 STR 3.2 - 3.4

CLASS DV_AMOUNT (abstract)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 49 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Quantity Package Data Types Information Model
Rev 2.1.0
6.2.8 Units Syntax
The BNF syntax specification of the units string, adapted from [8] is as follows:

Parse Specification
units ::= ‘/’ exp_units

| units ‘.’ exp_units
| units ‘/’ exp_units
| exp_units

CEN Quantifiable Data Item; Measurement data value class.

OMG HDTF COAS::Numeric.

Synapses Quantity

GEHR G1_QUANTITY

HL7 PhysicalQuantity (PQ)

Inherit DV_AMOUNT

Attributes Signature Meaning

1..1 magnitude: Double numeric magnitude of the quantity.

1..1
units: String Stringified units, expressed in UCUM unit syn-

tax, e.g. "kg/m2", “mm[Hg]", "ms-1", "km/h".
Implemented accordingly in subtypes.

0..1

precision: Integer Precision to which the value of the quantity
is expressed, in terms of number of decimal
places. The value 0 implies an integral quantity.
The value -1 implies no limit, i.e. any number of
decimal places.

Functions Signature Meaning

is_integral: Boolean True if precision = 0; quantity represents an
integral number.

(effected)

is_strictly_comparable_to
(other: like Current):
Boolean
require
units_equivalent(units,
other.units)

Test if two instances are strictly comparable by
ensuring that the measured property is the same,
achieved using the Measurement service func-
tion units_equivalent.

Invariants Precision_valid: precision >= -1
Units_valid: units /= void

CLASS DV_QUANTITY
Date of Issue: 12 Apr 2007 Page 50 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Quantity Package
Rev 2.1.0
exp_units ::= unit_group exponent | unit_group

unit_group ::= PREFIX annot_unit
| annot_unit
| ‘(’ exp_units ‘)’
| factor

annot_unit ::= unit_name
| unit_name ‘{’ ANNOTATION ‘}’
| ‘{’ ANNOTATION ‘}’

factor ::= Integer

exponent ::= SIGN Integer | Integer

Lexical Specification
PREFIX ::= ‘Y’ |‘Z’ | ‘E’ | ‘P’ | ‘T’ | ‘G’ | ‘M’ | ‘k’ | ‘h’ | ‘da’

| ‘d’ | ‘c’ | ‘m’ | ‘µ’ | ‘n’ | ‘p’ | ‘f’ | ‘a’ | ‘z’ | ‘y’
UNIT_NAME ::= [a-zA-Z_%]+ ; from unit tables
ANNOTATION ::= [a-zA-Z’.]+ ; from unit tables
SUFFIX ::= [a-zA-Z0-9’_]+ ; from unit tables

SIGN ::= ‘+’ | ‘-’
Integer ::= [0-9]+

This proposal is comprehensive, covering all useful unit systems, including SI, various imperial, cus-
tomary mesaures, and some obscure measures, as well as clinically specific additions. Metric pre-
fixes, meaning-changing textual suffixes (e.g. “[Hg]” in “mm[Hg]”) and non-meaning-changing
annotations (e.g. “kg {total}”) are recognised. With this syntax, units can be simply expressed in
strings such as:

“kg/m^2”, “m.s^-1”, “km/h”, “mm[Hg]”

and so on.

6.2.9 DV_COUNT Class

CLASS DV_COUNT

Purpose Countable quantities.

Use Used for countable types such as pregnancies and steps (taken by a physiotherapy
patient), number of cigarettes smoked in a day.

Misuse Not used for amounts of physical entities (which all have units)

ISO 18308 STR 3.2 - 3.4

HL7 INT

Inherit DV_AMOUNT

Attributes Signature Meaning

1..1 magnitude: Integer numeric magnitude of the quantity
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 51 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Quantity Package Data Types Information Model
Rev 2.1.0
6.2.10 DV_PROPORTION Class

Invariants

CLASS DV_PROPORTION

Purpose Models a ratio of values, i.e. where the numerator and denominator are both pure
numbers.

Use
Used for recording titers (e.g. 1:128), concentration ratios, e.g. Na:K (unitary
denominator), albumin:creatinine ratio, and percentages, e.g. red cell distirbution
width (RDW).

MisUse

Should not be used to represent things like blood pressure which are often written
using a ‘/’ character, giving the misleading impression that the item is a ratio,
when in fact it is a structured value. E.g. visual acuity “6/24” is not a ratio.

Should not be used for formulations.

ISO 18308 STR 3.6

OMG HDTF COAS::Ratio.

HL7 Ratio (RTO).

Inherit DV_AMOUNT, PROPORTION_KIND

Attributes Signature Meaning

1..1 numerator: Real numerator of ratio

1..1 denominator: Real denominator of ratio

1..1 type: Integer Indicates semantic type of propor-
tion, including percent, unitary etc.

0..1

precision: Integer Precision to which the numerator
and denominator values of the pro-
portion are expressed, in terms of
number of decimal places. The
value 0 implies an integral quantity.
The value -1 implies no limit, i.e.
any number of decimal places.

Functions Signature Meaning

is_integral: Boolean True if the numerator and denomina-
tor values are integers, i.e. if the pre-
cision is 0.

CLASS DV_COUNT
Date of Issue: 12 Apr 2007 Page 52 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Quantity Package
Rev 2.1.0
6.2.11 PROPORTION_KIND Class

magnitude: Real
ensure
Result = numerator / denominator

Effective magnitude represented by
ratio.

(effected)

is_strictly_comparable_to (other: like
Current): Boolean
ensure
type = other.type implies Result

True if type is the same.

Invariants

Type_validity: valid_proportion_kind(type)
Precision_validity: precision = 0 implies is_integral
Is_integral_validity: is_integral implies (numerator.floor = numerator and
denominator.floor = denominator)
Fraction_validity: (type = pk_fraction or type = pk_integer_fraction) implies
is_integral
Unitary_validity: type = pk_unitary implies denominator = 1
Percent_validity: type = pk_percent implies denominator = 100

CLASS PROPORTION_KIND

Purpose Class of enumeration constants defining types of proportion for the
DV_PROPORTION class.

Attributes Signature Meaning

const pk_ratio: Integer = 0 Ratio type. Numerator and denomi-
nator may be any value

const pk_unitary: Integer = 1 Denominator must be 1

const pk_percent: Integer = 2 Denominator is 100, numerator is
understood as a percentage value.

const
pk_fraction: Integer = 3 Numerator and denominator are

integral, and the presentation
method uses a slash, e.g. “1/2”.

const

pk_integer_fraction: Integer = 4 Numerator and denominator are
integral, and the presentation
method uses a slash, e.g. “1/2”; if
the numerator is greater than the
denominator, e.g. n=3, d=2, the
presentation is “1 1/2”.

Functions Signature Meaning

CLASS DV_PROPORTION
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 53 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Quantity Package Data Types Information Model
Rev 2.1.0
6.2.12 DV_ABSOLUTE_QUANTITY Class

valid_proportion_kind (n: Integer):
Boolean

True if n is one of the defined types.

Invariants

CLASS DV_ABSOLUTE_QUANTITY (abstract)

Purpose Abstract class defining the concept of quantified entities whose values are abso-
lute with respect to an origin. Dates and Times are the main example.

Inherit DV_QUANTIFIED

Abstract Signature Meaning

add (a_diff: like diff): like
Current

Addition of a differential amount to this
quantity.

subtract (a_diff: like diff):
like Current

Result of subtracting a differential amount
from this quantity.

diff (other: like Current):
DV_AMOUNT

Difference of two quantities.

Attributes Signature Meaning

0..1
accuracy: like diff Accuracy of measurement, expressed as a

half-range value of the diff type for this
quantity (i.e. an accuracy of x means +/−x).

Invariants

CLASS PROPORTION_KIND
Date of Issue: 12 Apr 2007 Page 54 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Date Time Package
Rev 2.1.0
7 Date Time Package

7.1 Overview
The data_types.quantity.date_time package includes three absolute date/time concepts:
DV_DATE, DV_TIME, DV_DATE_TIME, and a relative concept: DV_DURATION. The representations of
all of these are ISO8601:2004-compatible date/time strings. They also include the ISO8601 semantics
for partial dates and times. The date_time package is illustrated in FIGURE 9.

7.1.1 Requirements
Standard Date/Times
The basic requirement is for types which represent the following concepts:

• Date: a type which records year, month and day in month. Examples include date of birth,
date of onset of a problem

• Time: a type which records hour, minute, second, and timezone. Examples include time of
meal, time of day when a problem recurs. Timezone is required in a shared EHR repository
so that times of clinical events which occurred in different timezones are comparable; this
includes specialised pathology tests which might be done in another country.

• Date_time: a type which records year, month, day, hour, minute, second, and timezone.
Examples include date & time of death, timestamp of any observation. Timezone required
for the same reason as in Time.

• Duration: a type which records duration of an event or (in)activity, as days, hours, minutes,
and seconds.

Partial Date/Times
Partial or uncertain date/times have to be supported in clinical medicine. It is common for patients to
be unsure about dates and durations. Requirements for partial date/times include the following.

• For dates, one of the following rules applies to any instance:

FIGURE 9 rm.data_types.quantity.date_time Package

date_time

DV_DURATION
value[1]: String
magnitude: Double

DV_DATE_TIME
value[1]: String
magnitude: Double

DV_DATE
value[1]: String
magnitude: Integer

DV_TIME
value[1]: String
magnitude: Double

DV_ABSOLUTE_QUANTITY
(rm.data_types.quantity)

ISO8601_DURATION
(rm.support.assumed_types)

ISO8601_DATE_TIME
(rm.support.assumed_types)

ISO8601_TIME
(rm.support.assumed_types)

ISO8601_DATE
(rm.support.assumed_types)

DV_AMOUNT
(rm.data_types.quantity)

DV_TEMPORAL

diff (...): DV_DURATION
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 55 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Date Time Package Data Types Information Model
Rev 2.1.0
- only the year is known
- only the year and month are known

If not even the year is known, then the date is obviously extremely approximate and it would
probably be unsafe to represent it computationally. However, if computatable representation
was needed in this case, a date interval can be used. A pedantic example which breaks these
rules is someone who claims to be born on “a Monday at the start of May in 1934” (i.e. day
but not date unknown). Either the clinician determines what date the first Monday in May
1934 actually was and record that (assuming the patient’s way of accurately remembering
just happens to be via day rather than date), or else records a partial date of the form “May
1934” (in ISO 8601 form, “1934-05”) if they determine that the patient really is unsure.

• Sometimes incomplete times are recorded, which follow the same rule that either the hours
or both the hours and minutes are present. Examples:

- recordings by instruments which only generate hh:mm values (i.e. no seconds);
- recordings by patients who report approximate times of events;
- recordings by clinicians who use approximate times in administrations, e.g. “take

insulin at 8am” really means something like 8am +/- 30 mins.
• Imprecise durations such as “2 - 3 hrs” need to be recordable in a computable form.

To satisfy the faithfulness requirement for health record recording it should always be possible to
record the narrative form of the datum provided by the patient as well as the formal form.

7.1.2 Design
General Approach
Date/time values are somewhat special in the realm of data types in that they are expressed in their
“customary” form, in which the standard structure of {value, unit} and metric relationships between
orders of magnitude do not hold. The customary form is what we are used to using in the social time
domain, such as births, deaths, ages, and times and durations of events which we remember. In all
these cases it is expressed using the familiar year/month/date/hour/minute/second system, in which
the relationships between each successive unit of time is non-metric. The customary form can be con-
verted to a magnitude since an origin point, and many date/time libraries do this in order to implement
various operations, particularly comparison.

The date/time types fall into two categories: absolute and relative. The absolute category comprises
the Date, Date_time and Time concepts, each of which measure time from a known origin. Date and
Date_time measure calendrical time from the date 0001-01-01, while Time measures clock time from
midnight. Both Date_time and Time can include timezone information, ensuring that their instances
are correctly situated on the same timeline. All absolute time types inherit from the DV_TEMPORAL
type, which provides the appropriate signature for the diff() function.

The relative category contains only the Duration concept, which expresses elapsed time between two
time points. The DV_DURATION class is used for expressing durations of clinical phenomena and dif-
ferences between absolute times.

All four concepts are defined in the ISO 8601:2004 standard, which is accordingly used as the defini-
tional basis of the openEHR date/time types.

Partial Date/Times
The types defined in this specification support the notion of partially specified dates and times. The
modelling approach used here takes into account the known needs for representing partial date/time
Date of Issue: 12 Apr 2007 Page 56 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Date Time Package
Rev 2.1.0
data, while balancing that with the need to avoid incomprehensibly complex types whose generality
would only apply to a tiny percent of difficult cases. Thus, the basis for modelling incomplete
date/times is as follows.

• The modelling problem relates only to date/time quantities that need to be computable. For
extremely imprecise date/times, if the clinician feels the need, she can record it as narrative
text.

• For imprecise durations, an interval should be used, i.e. DV_INTERVAL<DV_DURATION>. In
this way durations like “2 - 3 hrs” can be represented, and still be computable.

Based on the above considerations, the requirements for partial types are satisfied by the semantics of
ISO8601:2004 for “reduced accuracy” date/times, in which parts of a date, time or date/time can be
missing from the right hand end of the string. This models the reasonable situation where e.g. day
may be unknown in a date, but a date cannot have month unknown and day known.

Calendars
A comment on calendars is in order. In this specification, all date/time types currently modelled are
Gregorian calendar based. This is the same assumption made by by ISO 8601, and most technical
computing systems today in many parts of the world. At first glance this may seem like a culturally
insensitive approach, but in fact it makes sense in computational terms, for both users of the Grego-
rian and other calendars, e.g. Julian, Islamic, Baha’i, etc. Arguments against trying to use the
date/time classes defined here to represent date/times from any calendar include the following:

• Almost all dates on computer systems, including in regions such as the Indian sub-continent,
Turkey and the middle east, where alternate calendars are in use, are in the Gregorian sys-
tem. This is likely to be the case for some time, and may always be the case, regardless of
the continued use of other calendars for religious or other purposes (outside of health);

• If a calendar indicator were used in date quantities, all software, to be correct, would have to
check the value to verify that it is in the expected calendar system, and to do something spe-
cial if it is not - an added cost which is a possible source of bugs and which would rarely be
used. The reality is that most software produced in the western world, India etc (possibly
excepting open source software) would automatically assume the Gregorian calendar, and
would be in error if ever it did receive EHR data containing dates from alternate calendars.

• If/when other calendars are used in EHR or related systems, the users of those calendars will
be aware of it, and include the appropriate conversion logic between Gregorian dates and
their own, limiting the extra software work and quality issues to those users who actually
need alternate calendars. If EHRs from such places are sent to a health care facility where
Gregorian is the default, nothing special is needed to ensure that those records will contain
dates comprehensible to the receiver.

• The detailed model of date/times in some other calendars is not the same as in the Gregorian
calendar, so they would require different classes anyway - the classes defined here would
not necessarily function correctly simply by adding a calendar field.

For users requiring non-Gregorian dates in EHR and other health systems there are two approaches.
One is to treat non-Gregorian dates as a localisation issue, to be handled inside the application and
GUI evnvironment. The other is to actually add further sibling packages to the openEHR date/time
package, for each new calendar or calendar group required. Conversion algorithms would most likely
be needed in and out of the Gregorian types to enable interoperability of information drawn from dif-
ferent applications or sources. This approach may require a substantial modelling effort.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 57 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Date Time Package Data Types Information Model
Rev 2.1.0
Algorithms for conversion between the Egyptian, Armenian, Khwarizmian, Persian, Ethiopian, Cop-
tic, Republican, Macedonian, Syrian, Julian Roman, Gregorian, Islamic A, Islamic B, Baha’i and
Saka calendars are described by Richards [7] and are based on the work of D. A. Hatcher (1986).

Representation
All of the date/time classes described here are defined so as to have an attribute called value of type
String, in the form of an ISO 8601:2004 string. ISO 8601 is convenient for this purpose, as it is a sim-
ple syntax, and covers not only all four variants of fully-specified date/time described here, but also
the partial varieties. Using a single string attribute significantly simplifies persistence as well as map-
ping to XML-based formalisms, which use a mostly ISO 8601 compliant date/time representation.
The ISO 8601 semantics assumed by EHR are defined in classes found in the classes
ISO8601_DATE, ISO8601_TIME, ISO8601_DATE_TIME, ISO8601_DURATION, from the
rm.support.assumed_types package. These classes are inherited into the corresponding classes
defined below.

7.2 Class Descriptions

7.2.1 DV_TEMPORAL Class

7.2.2 DV_DATE Class

CLASS DV_TEMPORAL (abstract)

Purpose Specialised temporal variant of DV_ABSOLUTE_QUANTITY whose diff type is
DV_DURATION.

Inherit DV_ABSOLUTE_QUANTITY

Abstract Signature Meaning

(redefined) diff (other: like Current):
DV_DURATION

Difference of two temporal quantities.

Invariants

CLASS DV_DATE

Purpose Represents an absolute point in time, as measured on the Gregorian calendar, and
specified only to the day. Semantics defined by ISO 8601.

Use Used for recording dates in real world time. The partial form is used for approxi-
mate birth dates, dates of death, etc.

ISO 18308 STR 3.7

CEN TOCD choice Quantifiable Observation Data Item

Synapses DTValue attribute of DateTime class (this does not distinguish the representation
of dates and of times)
Date of Issue: 12 Apr 2007 Page 58 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Date Time Package
Rev 2.1.0
7.2.3 DV_TIME Class

GEHR G1_DATE

HL7
PointInTime (TS). Note that this type simply measures a number of seconds
since an epoch, with a timezone. These values are convertable to y/m/d form via
the calendar attribute of TS.

Inherit DV_TEMPORAL, ISO8601_DATE

Functions Signature Meaning

(effected) diff (other: like Current):
DV_DURATION

Difference of two dates.

Attributes Signature Meaning

value: String ISO8601 date string

Functions Signature Meaning

(effected)
magnitude: Integer
ensure
Result >= 0

Numeric value of the date as days since the
calendar origin point 1/1/0000

Invariants Value_valid: valid_iso8601_date(value)

CLASS DV_TIME

Purpose
Represents an absolute point in time from an origin usually interpreted as mean-
ing the start of the current day, specified to the second. Semantics defined by ISO
8601.

Use
Used for recording real world times, rather than scientifically measured fine
amounts of time. The partial form is used for approximate times of events and
substance administrations.

ISO 18308 STR 3.7, 3.10

CEN TOCD choice Quantifiable Observation Data Item

Synapses DTValue attribute of DateTime class (this does not distinguish the representation
of dates and of times)

GEHR G1_TIME

HL7
PointInTime (TS). Note that this type simply measures a number of seconds since
an epoch. These values are convertable to ymd form via the calendar attribute of
TS.

CLASS DV_DATE
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 59 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Date Time Package Data Types Information Model
Rev 2.1.0
7.2.4 DV_DATE_TIME Class

Inherit DV_TEMPORAL, ISO8601_TIME

Functions Signature Meaning

(effected) diff (other: like Current):
DV_DURATION

Difference of two times.

Attributes Signature Meaning

value: String ISO8601 time string

Functions Signature Meaning

(effected)
magnitude: Double
ensure
Result >= 0.0

Numeric value of the time as seconds since the
start of day.

Invariants Value_valid: valid_iso8601_time(value)

CLASS DV_DATE_TIME

Purpose Represents an absolute point in time, specified to the second. Semantics defined
by ISO 8601.

Use
Used for recording a precise point in real world time, and for approximate time
stamps, e.g. the origin of a HISTORY in an OBSERVATION which is only partially
known.

ISO 18308 STR 3.7, 3.10

CEN TOCD choice Quantifiable Observation Data Item

OMG HDTF COAS::DateTime

Synapses DTValue attribute of DateTime class (this does not distinguish the representation
of dates and of times)

GEHR G1_DATE_TIME

HL7
PointInTime (TS). Note that this type simply measures a number of seconds since
an epoch, with a timezone. These values are convertable to y/m/d form via the
calendar attribute of TS.

Inherit DV_TEMPORAL, ISO8601_DATE_TIME

Functions Signature Meaning

CLASS DV_TIME
Date of Issue: 12 Apr 2007 Page 60 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Date Time Package
Rev 2.1.0
7.2.5 DV_DURATION Class

(effected) diff (other: like Current):
DV_DURATION

Difference of two date/times.

Attributes Signature Meaning

value: String ISO8601 date/time string

Functions Signature Meaning

(effected)
magnitude: Double
ensure
Result >= 0.0

numeric value of the date/time as seconds
since the calendar origin point.

Invariants Value_valid: valid_iso8601_date_time(value)

CLASS DV_DURATION

Purpose

Represents a period of time with respect to a notional point in time, which is not
specified. A sign may be used to indicate the duration is “backwards” in time
rather than forwards.

Note that a deviation from ISO8601 is supported, allowing the ‘W’ designator to
be mixed with other designators. See assumed types section in the Support IM.

Use

Used for recording the duration of something in the real world, particularly when
there is a need a) to represent the duration in customary format, i.e. days, hours,
minutes etc, and b) if it will be used in computational operations with date/time
quantities, i.e. additions, subtractions etc.

MisUse Durations cannot be used to represent points in time, or intervals of time.

ISO 18308 STR 3.10

CEN Time Interval or Date Range or text description (pt 4)

GEHR G1_DATE_TIME_DURATION

HL7 Interval of Point in Time, IVL<TS>. The width attribute provides the duration.
IVL<TS> thus models an anchored duration.

Inherit DV_AMOUNT, ISO8601_DURATION

Attributes Signature Meaning

value: String ISO8601 duration

Functions Signature Meaning

CLASS DV_DATE_TIME
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 61 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Date Time Package Data Types Information Model
Rev 2.1.0
prefix ‘-’: like Current Negated copy of current object.

(effected) magnitude: Double Numeric value of the duration in seconds.

Invariants Value_valid: valid_iso8601_duration(value)

CLASS DV_DURATION
Date of Issue: 12 Apr 2007 Page 62 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Time_specification Package
Rev 2.1.0
8 Time_specification Package

8.1 Overview
Time specification is about potentiality rather than actuality, and needs its own types. The openEHR
data_types.time_specification package provides such types, based on the HL7 types of the
same names, and is illustrated in FIGURE 10.

8.1.1 Requirements
One of the difficulties with time is expressing future times, since potential occurrences, durations,
repetitions cannot be expressed in the same way as actual time. Complicating the problem is the fact
that humans tend to use very customary (i.e. calandar-anchored) ways of specifying time, such as
“every second Tuesday”, or “ the first Sunday of the month”. In clinical medicine, future time is most
commonly used to express when medications or other therapies are intended to take place. They are
often anchored to the calendar, and can easily include repetitions.

As with other time types, there are both simple and complex cases to consider. One of the most com-
mon examples of time in the future is the timing for drug administrations, e.g. “once every four
hours”. This could be represented as a simple periodic specification, consisting of a start point in
time, a period, and a number of repetitions. The specification for taking blood sugar levels during a
glucose test could be represented as a simple aperiodic series, e.g. “.5hr, 1hr, 2hr”. However, even
common specifications for prescriptions e.g. “three times a day for seven days” start to become quite
complex, for example, because “three times a day” might not mean literally 8 hours apart.

Some of the factors to consider in timing specifications are:

• period of repetition
• duration of activity being specified

time_specification

FIGURE 10 rm.data_types.time_specification Package

DV_TIME_SPECIFICATION
value[1]: DV_PARSABLE
calendar_alignment: String
event_alignment: String
institution_specified: Boolean

DV_GENERAL_TIME_
SPECIFICATION

calendar_alignment: String
event_alignment: String
institution_specified: Boolean

DV_PERIODIC_TIME_
SPECIFICATION

period: DV_DURATION
calendar_alignment: String
event_alignment: String
institution_specified: Boolean

DATA_VALUE
(rm.data_types.basic)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 63 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Time_specification Package Data Types Information Model
Rev 2.1.0
• possible alignment to the calendar, e.g. “every 5th of the month”
• possible alignment to real world events e.g. “after meals”
• fuzziness

Because time is inherently “messy” (months do not all have the same number of days, leap years
change the number of days in some years etc), and because the relationship we have with time can
also be arbitrary (e.g. anchored to mealtimes etc), specifying linguistically obvious specifications for-
mally is quite challenging.

8.1.2 Design
The HL7 version 3 data types for time specification appear to allow for all of the required possibili-
ties. The syntax is based on the ISO 8601 standard [9]. It provides types which express:

• Periodic intervals (HL7v3 - PIVL<T:TS>) - allows period, duration, and calendar linking to
be specified.

• Event-linked periodic intervals (HL7v3 - EIVL<T:TS>) - allows PIVLs to be linked to real-
world events like meals.

• General timing specification (HL7v3 - GTS) - allows any time specification to be expressed,
using a syntax which is equivalet to a series of IVL<TS> (i.e. intervals of DATE_TIME).

The HL7 syntax for time specification is encapsulated in equivalent openEHR types described here.

8.2 Class Descriptions

8.2.1 DV_TIME_SPECIFICATION Class

CLASS DV_TIME_SPECIFICATION (abstract)

Purpose
This is an abstract class of which all timing specifications are specialisations.
Specifies points in time, possibly linked to the calendar, or a real world repeating
event, such as “breakfast”.

ISO 18308 STR 3.9

Inherit DATA_VALUE

Attributes Signature Meaning

1..1 value: DV_PARSABLE the specification, in the HL7v3 syntax
for PIVL or EIVL types. See below.

Abstract Signature Meaning

calendar_alignment: String Indicates what prototypical point in
the calendar the specification is
aligned to, e.g. “5th of the month”.
Empty if not aligned. Extracted from
the ‘value’ attribute.
Date of Issue: 12 Apr 2007 Page 64 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Time_specification Package
Rev 2.1.0
8.2.2 DV_PERIODIC_TIME_SPECIFICATION Class

event_alignment: String Indicates what real-world event the
specification is aligned to if any.
Extracted from the ‘value’ attribute.

institution_specified: Boolean Indicates if the specification is aligned
with institution schedules, e.g. a hos-
pital nursing changeover or meal serv-
ing times. Extracted from the ‘value’
attribute.

Invariant Value_valid: value /= Void

CLASS DV_PERIODIC_TIME_SPECIFICATION

Purpose
Specifies periodic points in time, linked to the calendar (phase-linked), or a real
world repeating event, such as “breakfast” (event-linked). Based on the HL7v3
data types PIVL<T> and EIVL<T>.

Use Used in therapeutic prescriptions, expressed as INSTRUCTIONs in the openEHR
model.

ISO 18308 STR 3.9

CEN The Duration data value class provides for the specification of time intervals, and
also for a simple string description of the periodicity.

HL7 PIVL<T>, EIVL<T>

Inherit DV_TIME_SPECIFICATION

Functions Signature Meaning

period: DV_DURATION
ensure
Result /= Void

The period of the repetition, computa-
tionally derived from the syntax repre-
sentation. Extracted from the ‘value’
attribute.

calendar_alignment: String Calendar alignment extracted from
value.

event_alignment: String Event alignment extracted from value.

institution_specified: Boolean Extracted from value.

Invariant Value_valid: value.formalism.is_equal(“HL7:PIVL”) or value.formal-
ism.is_equal(“HL7:EIVL”)

CLASS DV_TIME_SPECIFICATION (abstract)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 65 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Time_specification Package Data Types Information Model
Rev 2.1.0
8.2.2.1 Phase-linked Time Specification Syntax
The syntactic form of phase-linked periodic time specifications (derived from the PIVL<T> spec
HL7v3 ballot) is as follows.

“[” interval “]” “/” “(” difference “)” [“@” alignment] [“IST”]

Examples include:

• [200004181100;200004181110]/(7d)@DW = every Tuesday from 11:00 to 11:10 AM.
• [200004181100;200004181110]/(1mo)@DM" = every 18th of the month 11:00 to

11:10 AM.

A parse specification is as follows:
phase_linked_time_spec: pure_phase_linked_time_spec |

pure_phase_linked_time_spec “IST”

pure_phase_linked_time_spec: phase |
phase “@” alignment

phase: interval “/” “(” difference “)”
alignment: “DW” | etc /* terms from “HL7::CalendarCycle” domain */
difference: /* ISO 8601 for time difference */
interval: “[” interval_spec “]”
interval_spec: “;” |

“;” date_time |
date_time “;” date_time |
date_time “;”

date_time: /* ISO 8601 for date/time string yyyymmdd[hh[mm[ss]]] */
8.2.2.2 Event-linked Periodic Time Specification Syntax
Examples of event-linked periodic time specifications include:

• "PC+[1h;1h]" = one hour after meal
• "HS-[50min;1h]" = one hour before bedtime for 10 minutes

The following parse specification defines the syntax for event-related periodic time specifications.
event_linked_time_spec: event |

event offset

event: “AC” | “ACD” | etc /* HL7 domain “HL7::TimingEvent” */
offset: "+" dur_interval |

"-" dur_interval

dur_interval: /* ISO 8601 for duration interval */
8.2.3 DV_GENERAL_TIME_SPECIFICATION Class

CLASS DV_GENERAL_TIME_SPECIFICATION

Purpose Specifies points in time in a general syntax. Based on the HL7v3 GTS data type.
Date of Issue: 12 Apr 2007 Page 66 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Time_specification Package
Rev 2.1.0
8.2.3.1 General Time Specification Syntax
The class is the same structurally as the DV_TIME_SPECIFICATION parent. The syntax is the HL7
GTS syntax, defined by the following parse specification:

general_time_spec: symbol |
union |
exclusion

union: intersection ";" union |
intersection

exclusion: exclusion "\" intersection
intersection: factor intersection |

factor

hull: factor ".." hull |
factor

factor:
interval |
phase_linked_time_spec |
event_linked_time_spec |
"(" general_time_spec ")"

Use

ISO 18308 STR 3.9

CEN The Duration data value class provides for the specification of time intervals, and
also for a simple string description of the periodicity.

HL7 GTS

Inherit DV_TIME_SPECIFICATION

Functions Signature Meaning

calendar_alignment: String Calendar alignment extracted from
value.

event_alignment: String Event alignment extracted from value.

institution_specified: Boolean Extracted from value.

Invariant Value_valid: value.formalism.is_equal(“HL7:GTS”)

CLASS DV_GENERAL_TIME_SPECIFICATION
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 67 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Time_specification Package Data Types Information Model
Rev 2.1.0
Date of Issue: 12 Apr 2007 Page 68 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Encapsulated Package
Rev 2.1.0
9 Encapsulated Package

9.1 Overview
The data_types.encapsulated package contains classes representing data values whose internal
structure is defined outside the EHR model, such as multimedia and parsable data. It is illustrated in
FIGURE 11.

9.1.1 Requirements
There is a need to be able to include content in the EHR whose interior structure is not modelled in
the EHR reference model, but instead documented by sufficient meta-data attributes for specific tools
to process the data. Types of content in this category are as follows.

• Images, including images which are themselves a compressed version of one image from a
high-resolution image set stored elsewhere. Such images may be in any of the well-known
compressed or uncompressed formats, and may have their own thumbnail image attached, to
facilitate web-viewing.

• Bio-signal data series, such as a set of values representing a diagnostic part of an ECG trace.
This might be represented as DICOM content.

• Content which is textual (or nearly so) which is essentially a parsable language file of some
kind. This includes all XML instance, HTML, and any other EHR content which happens to

encapsulated

FIGURE 11 rm.data_types.encapsulated Package

DV_ENCAPSULATED
charset[0..1]: CODE_PHRASE
language[0..1]: CODE_PHRASE
size: Integer

DV_MULTIMEDIA
alternate_text[0..1]: String
uri[0..1]: DV_URI
data[0..1]: Array<Octet>
media_type[1]: CODE_PHRASE
compression_algorithm[0..1]: CODE_PHRASE
integrity_check[0..1]: Array<Octet>
integrity_check_algorithm[0..1]: CODE_PHRASE
size[1]: Integer
is_external[1]: Boolean
is_inline[1]: Boolean
is_compressed[1]: Boolean
has_integrity_check[1]: Boolean

DV_PARSABLE
value[1]: String
formalism[1]: String
size: Integer

0..1thumbnail

coded by openEHR
codeset “media types”

coded by openEHR
codeset “compression
algorithm”

coded by openEHR
codeset “integrity
check algorithm”

coded by openEHR
codeset “languages”

coded by openEHR
codeset “character sets”

DATA_VALUE
(rm.data_types.basic)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 69 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Encapsulated Package Data Types Information Model
Rev 2.1.0
be represented in syntax form - such as the unit strings used in quantities. The name of the
formalism should be stored as meta-data.

• Binary content which is processed by a work processor or other dedicated tool.
• Digital signatures.

Sufficient meta-data must be included with all of these types to enable a way for the content to be
processed, typically by indicating either its type (e.g. “jpeg”, “word document”) or the name of a tool
which can be used to process it. Important meta-data include:

• size of the content;
• natural language, if any.

Any encapsulated data item may be a summary, “thumbnail” or otherwise reduced form of an original
content item found outside the EHR, in some other system or file-system.

Checksums must be expressible for those items for which a checksum is available, or for which the
system generates checksums to improve the quality of its internal data transmissions.

9.1.2 Design
The design approach used here is based on the following analysis.

1. Any encapsulated data item may be in some particular language, even if it is an image or
other graphic form such as a biosignal with axis markings in a particular language;

2. The general structure of encapsulated content data items includes a block of bytes or charac-
ters representing the content, and various meta-data as appropriate, including:

- size
- character encoding
- compression type/algorithm
- name of formalism for parsable content

3. For encapsulated items that have a counterpart in another system, the standard means of
portable address is the W3C URI;

4. For items may that have an associated integrity checksum, the checksum is itself a series of
bytes, and the type of checksum must also be specified, e.g. “md5”.

These observations lead naturally to an abstract DV_ENCAPSULATED class, with two subtypes,
DV_PARSABLE, for all content which is syntactic in nature, and DV_MULTIMEDIA for everything else.
Note that it is possible to imagine parsable content items which are large, stored in compressed form,
and are themselves a summary of another item elsewhere on the web; such items can for practical
purposes be represented as instances of DV_MULTIMEDIA, rather than DV_PARSABLE. The vast
majority of parsable encapsulated data are expected to be short and stored in native textual form, e.g.
fragments of XML or HTML.

The formal model of the classes DV_ENCAPSULATED and DV_MULTIMEDIA are closely based on the
ED type from the HL7v3 data types specification.

9.2 Class Descriptions

9.2.1 DV_ENCAPSULATED Class
Date of Issue: 12 Apr 2007 Page 70 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Encapsulated Package
Rev 2.1.0
9.2.2 DV_MULTIMEDIA Class

CLASS DV_ENCAPSULATED (abstract)

Purpose Abstract class defining the common meta-data of all types of encapsulated data.

ISO 18308 STR 2.6

CEN TBD

OMG HDTF COAS::MultiMedia

HL7 Encapsulated_data (ED)

Inherit DATA_VALUE

Abstract Signature Meaning

1..1

size: Integer Original size in bytes of unencoded encapsu-
lated data. I.e. encodings such as base64, hex-
adecimal etc do not change the value of this
attribute.

Attributes Signature Meaning

0..1

charset: CODE_PHRASE Name of character encoding scheme in which
this value is encoded. Coded from openEHR
Code Set “character sets”. Unicode is the
default assumption in openEHR, with UTF-8
being the assumed encoding. This attribute
allows for variations from these assumptions.

0..1
language: CODE_PHRASE Optional indicator of the localised language

in which the data is written, if relevant.
Coded from openEHR Code Set “languages”.

Functions Signature Meaning

as_string: String Result = alternate_text [(uri)]

Invariant

Size_positive: size >= 0
Language_valid: language /= Void implies
code_set(Code_set_id_languages).has_code(language)
Charset_valid: charset /= Void implies
code_set(Code_set_id_character_sets).has_code(charset)

CLASS DV_MULTIMEDIA

Purpose
A specialisation of DV_ENCAPSULATED for audiovisual and biosignal types.
Includes further metadata relating to multimedia types which are not applicable to
other subtypes of DV_ENCAPSULATED.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 71 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Encapsulated Package Data Types Information Model
Rev 2.1.0
Use

ISO 18308 STR 3.1

Synapses The Bulky Data class provides for the representation and storage of all binary data
classified by its MIME type.

GEHR G1_MULTIMEDIA_DATA

HL7 Encapsulated_data (ED)

Inherit DV_ENCAPSULATED

Attributes Signature Meaning

0..1 alternate_text: String Text to display in lieu of multimedia display/replay

1..1
media_type: CODE_PHRASE Data media type coded from openEHR code set

“media types” (interface for the IANA MIME
types code set).

0..1
compression_algorithm:
CODE_PHRASE

Compression type, a coded value from the
openEHR “Integrity check” code set. Void means
no compression.

0..1 integrity_check:
Array <Octet>

Binary cryptographic integrity checksum

0..1
(cond)

integrity_check_algorithm:
CODE_PHRASE

Type of integrity check, a coded value from the
openEHR “Integrity check” code set.

0..1 thumbnail:
DV_MULTIMEDIA

The thumbnail for this item, if one exists; mainly
for graphics formats.

0..1
(cond)

uri: DV_URI URI reference to electronic information stored out-
side the record as a file, database entry etc, if sup-
plied as a reference.

0..1
(cond)

data: Array <Octet> The actual data found at uri, if supplied inline

1..1
(effected)

size: Integer Size in bytes of data, if present, or else of the
object referred to by uri.

Functions Signature Meaning

is_external: Boolean
ensure
uri /= Void implies Result

Computed from the value of the uri attribute: True
if the data is stored externally to the record, as
indicated by `uri'. A copy may also be stored inter-
nally, in which case `is_expanded' is also true.

CLASS DV_MULTIMEDIA
Date of Issue: 12 Apr 2007 Page 72 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Encapsulated Package
Rev 2.1.0
9.2.3 DV_PARSABLE Class

is_inline: Boolean
ensure
data /= Void implies Result

Computed from the value of the data attribute:
True if the data is stored in expanded form, ie
within the EHR itself.

is_compressed: Boolean
ensure
compression_algorithm /=
Void implies Result

Computed from the value of the
compression_algorithm attribute: True if the data
is stored in compressed form.

has_integrity_check:
Boolean
ensure
integrity_check_algorithm /=
Void implies Result

Computed from the value of the
integrity_check_algorithm attribute: True if an
integrity check has been computed.

Invariant

Not_empty: is_inline or is_external
Media_type_validity: media_type /= Void and then
code_set(Code_set_id_media_types).has_code(media_type)
Compression_algorithm_validity: compression_algorithm /= Void implies
code_set(Code_set_id_compression_algorithms).
has_code(compression_algorithm)
Integrity_check_validity: integrity_check /= Void implies
integrity_check_algorithm /= Void
Integrity_check_algorithm_validity: integrity_check_algorithm /= Void implies
code_set(Code_set_id_integrity_check_algorithms).
has_code(integrity_check_algorithm)

CLASS DV_PARSABLE

Purpose

Encapsulated data expressed as a parsable String. The internal model of the
data item is not described in the openEHR model in common with other encapsu-
lated types, but in this case, the form of the data is assumed to be plaintext, rather
than compressed or other types of large binary data.

Use Used for representing values which are formal textual representations, e.g. guide-
lines.

ISO 18308 (none)

Inherit DV_ENCAPSULATED

Functions Signature Meaning

1..1
(effected)

size: Integer Size in bytes of value.

CLASS DV_MULTIMEDIA
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 73 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Encapsulated Package Data Types Information Model
Rev 2.1.0
Attributes Signature Meaning

1..1 value: String The string, which may validly be
empty in some syntaxes

1..1 formalism: String name of the formalism, e.g. “GLIF
1.0”, “proforma” etc.

Invariant value_valid: value /= Void
formalism_validity: formalism /= Void and then not formalism.is_empty

CLASS DV_PARSABLE
Date of Issue: 12 Apr 2007 Page 74 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Uri Package
Rev 2.1.0
10 Uri Package

10.1 Overview
The data_types.uri package includes two types used for referring to information resources. The
DV_URI type allows data values which are references to objects on the world wide web to be created.
Its specialisation, DV_EHR_URI, enables any element in an openEHR record to be identified in the
same way as other objects on the web. The DV_EHR_URI type is convenient, because it is a string,
like any other URI, and is therefore easily transportable and processable. Because it has its own
scheme space, “ehr”, instances can be globally unique, as long as EHR identification is globally
unique. DV_EHR_URIs are used to express all runtime paths in the EHR. The uri Package is illus-
trated in FIGURE 12.

10.1.1 Requirements
This package meets the requirement for a DATA_VALUE subtype which represents a W3C Uniform
Resource Identifier (URI). A common example of where this might be used is to represent a reference
to a clinical guideline or other justifying document associated with an intervention or treatment plan
recorded in the EHR.

URIs are a superset of Uniform Resource Locators (URLs) (although the two are often confused,
even within the W3C), and can be used to specify the location of any information item, regardless of
its type, location or storage method, as long as a URI “scheme” exists for that type of information.

There is an additional requirement for a kind of URI that can point at an EHR data item, either inside
the same EHR containing the link, or in another EHR. This is the basis of implementing the LINK
type.

10.1.2 Design
A simple design approach is used whereby a URI is represented as a String, and appropriate functions
are defined to extract the various parts according to the syntax of URIs defined by Tim Berners-Lee at
http://www.ietf.org/rfc/rfc2396.txt. An EHR specific subtype is defined, whose scheme is
“ehr”, and which contains further attributes enabling the instances of the type to record what kind of
object they are referring to.

FIGURE 12 rm.data_types.uri Package

DV_EHR_URI

DV_URI
value[1]: String
scheme: String
path: String
fragment_id: String
query: String

uri

DATA_VALUE
(rm.data_types.basic)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 75 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://www.ietf.org/rfc/rfc2396.txt

Uri Package Data Types Information Model
Rev 2.1.0
10.2 Definitions
The following symbolic definitions are used in the classes below.

• Ehr_scheme: String is “ehr”

10.3 Class Descriptions

10.3.1 DV_URI Class

CLASS DV_URI

Purpose

A reference to an object which conforms to the Universal Resource Identifier
(URI) standard, as defined by W3C RFC 2936. See "Universal Resource Identifi-
ers in WWW" by Tim Berners-Lee at
http://www.ietf.org/rfc/rfc2396.txt. This is a World-Wide Web RFC
for global identification of resources.

See http://www.w3.org/Addressing for a starting point on URIs.

See http://www.ietf.org/rfc/rfc2806.txt for new URI types like tele-
phone, fax and modem numbers.

Use Enables external resources to be referenced from within the content of the EHR.
A number of functions return the logical subparts of the URI string.

MisUse

CEN TBD

OMG HDTF COAS::TechnologyInstanceLocator

HL7 TBD

Inherit DATA_VALUE

Attributes Signature Meaning

1..1 value: String Value of URI as a String.

Functions Signature Meaning
Date of Issue: 12 Apr 2007 Page 76 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://www.ietf.org/rfc/rfc2396.txt

Data Types Information Model Uri Package
Rev 2.1.0
10.3.2 DV_EHR_URI Class

scheme: String A distributed information "space" in which infor-
mation objects exist. The scheme simultaneously
specifies an information space and a mechanism for
accessing objects in that space. For example if
scheme = "ftp", it identifies the information space
in which all ftpable objects exist, and also the
application - ftp - which can be used to access them.
Values may include: "ftp", "telnet", "mailto",
"gopher" and many others. Refer to WWW URI
RFC for a full list.
New information spaces can be accommodated
within the URI specification.

path: String A string whose format is a function of the
scheme. Identifies the location in <scheme>-
space of an information entity. Typical values
include hierarchical directory paths for any
machine. For example, with scheme = "ftp", path
might be /pub/images/image_01. The strings
"." and ".." are reserved for use in the path. Paths
may include internet/intranet location identifiers
of the form: sub_domain...domain, e.g.
"info.cern.ch"

fragment_id: String A part of, a fragment or a sub-function within an
object. Allows references to sub-parts of objects,
such as a certain line and character position in a
text object. The syntax and semantics are defined
by the application responsible for the object.

query: String Query string to send to application implied by
scheme and path Enables queries to applications,
including databases to be included in the URI
Any query meaningful to the server, including
SQL.

Invariant value_exists: value /= Void and then not value.is_empty

CLASS DV_EHR_URI

Purpose A DV_EHR_URI is a DV_URI which has the scheme name “ehr”, and which can
only reference elements in EHRs. The syntax is described below.

Use Used to reference elements in an EHR, which may be the current one, or another.

Inherit DV_EHR_URI

CLASS DV_URI
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 77 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Uri Package Data Types Information Model
Rev 2.1.0
10.3.2.1 DV_EHR_URI Syntax
The syntax of a DV_EHR_URI is an openEHR path, inside the “ehr” URI scheme-space, and is of the
form:

“ehr://” ehr_path

The syntax of ehr_path is described in the section on Paths in The openEHR Architecture Overview
document. DV_EHR_URIs are used as a mechanism for referencing in the EHR, ensuring readability
by humans, as well as validity when extracts are transmitted elsewhere: even if the target of a path is
not present, the path can be used to locate the missing item on demand.

Functions Signature Meaning

Invariant Scheme_is_ehr: scheme.is_equal(Ehr_scheme)

CLASS DV_EHR_URI
Date of Issue: 12 Apr 2007 Page 78 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Implementation Strategies
Rev 2.1.0
11 Implementation Strategies

11.1 Overview
This section notes a few of the general challenges for mapping the openEHR data types to implemen-
tation technologies such as programming languages and XML. For specific guidelines, Implementa-
tion Technology Specification (ITS) document for each target formalism should be consulted.

11.2 Quantities and Ordered_numeric
In the quantity package, the type DV_QUANTIFIED is shown having an abstract property of type
Ordered_numeric. This is intended to indicate that the type DV_QUANTIFIED is distinguished by
the magnitude property (compared to say DV_ORDERED, which describes ordered things without hav-
ing magnitudes). The type Ordered_numeric be mapped to various types in implementation tech-
nologies as follows:

• Java: java.lang.Number
• C#: System.IComparable
• Eiffel: NUMERIC

All of these type systems currently suffer from not having a single type whose meaning is both
“ordered” (having the function ‘<‘) and “numeric” (having the functions ‘+’, ‘-’, ‘*’, ‘/’) but in prac-
tice it does not matter much. For type systems with no convenient supertype of the numeric concrete
types Real, Integer, Double, the magnitude property can safely be left out of DV_QUANTIFIED;
the only drawback is that code cannot call DV_QUANTIFIED.magnitude polymmorphically, e.g. in a
statistical application processing DV_QUANTITY and DV_COUNT objects.

11.3 Unicode
Unicode is supported in various ways in different languages. In Java, since JDK 1.1, unicode support
is implicit in the base classes. From the documentation:

the classes java.io.InputStreamReader, java.io.OutputStreamWriter, and
java.lang.String can convert between Unicode and a number of other character
encodings. More information is available at:
http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html.

In the C# language, conversion can be done between Unicode and other codepages using the Sys-
tem.Text.UnicodeEncoding (for UTF-16) and System.Text.UTF8Encoding (for UTF-8)
classes.

In XML unicode is handled by specifying the encoding of the document in the XML declaration, e.g.
<?xml version="1.0" encoding="UTF-16"?>.

In the Eiffel language, unicode is available in the Gobo public domain library (see
http://www.gobosoft.com), in the UC_STRING class, which inherits from the String class.

The support in other languages varies, and may require a special type like the UC_STRING used in
Eiffel.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 79 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html
http://www.gobosoft.com

Implementation Strategies Data Types Information Model
Rev 2.1.0
11.4 Dates and Times
In some formalisms, dates and times are represented using a single calendar-like class. This is not
considered to be good practice from the point of specification, since it is more difficult to state proper
invariants for such a class used to represent a particular logical type such as a DATE or TIME, how-
ever, its utility in implementation is recognised.

Where implementors want to use such a class (call it CALENDAR here for the sake of discussion) the
recommended approach is to wrap the class CALENDAR with classes representing the types described
in this specification, i.e. DATE etc. This enables the addition of any necessary functionality in the
wrapper for example, for serialising and deserialising in and out of XML.
Date of Issue: 12 Apr 2007 Page 80 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Comparison with HL7v3 Types
Rev 2.1.0
12 Comparison with HL7v3 Types

12.1 Scope
Some HL7v3 types are not modelled in openEHR. HL7v3 V3DT types which are assumed by
openEHR to exist in the underlying type system of any implementation technology include:

• Integer (INT)
• Real (REAL)
• Set (SET)
• List (LIST)
• Bag (BAG)

HL7v3 types which are not modelled here because they are almost always too volatile for concrete
modelling, and can be created with archetyped generic information structures are as follows (even in
HL7 they are really data structures rather than data types):

• Postal address (AD)
• Entity name (EN)
• Person name (PN)
• Organisation name (ON)
• Trivial name (TN)

These types are all modelled by archetyped spatial data structures in openEHR (equivalent to sub-
types of Structure in the CDA specification).

HL7v3 types which may need to be modelled in the future include:

• Uncertain value probabilistic (UVP)
• Non-parametric probability distribution (NPPD)
• Parametric probability distribution (PPD)

Types which are provided by openEHR but not supported directly by HL7 include:

• state variable (DV_STATE);
• ordinal values (DV_ORDINAL);
• explicit partial date and time types (DV_DATE, DV_TIME);
• explicit time duration (DV_DURATION).

Types in the latter two categories may be implementable with the TS (timestamp) type.

12.2 Design Differences
There are some significant differences in design approach between the openEHR data types and the
HL7v3 data types, described in the following sections.

12.2.1 Naming
All types in the HL7 specification have two names, one short and one long. For example the type rep-
resenting physical quantities is known both as “PhysicalQuantity” and “PQ”. While short names may
be reasonable for often-used types, someshort names are not obvious, e.g. “EN”, “ON”, “TN”,
“NPPD” etc. Short names certainly have benefits for drawing tools such as Rational Rose or other
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 81 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Comparison with HL7v3 Types Data Types Information Model
Rev 2.1.0
UML tools, however, it is questionable whether a formal model should include concept names chosen
on the basis of visual appearance in such tools (one might argue that such tools should provide aliases
for visual purposes, without changing the actual model). Another problem is that UML does not
include the concept of class name aliases, nor do most programming languages.

The openEHR model uses one name only for each class.

12.2.2 Identification
The HL7 V3DT includes the types II, UID, OID and UUID. The II type is claimed to be for identify-
ing all kinds of entities, which we here classify as real-world entities (“RWEs”) (such as people, vehi-
cle registrations, invoices) and informational entities (“IEs”) - which in general are snapshots of data
representing an RWE in a computer system. One problem with RWE identification schemes is that
some are known (e.g. social security number) to produce fallible identifiers or situations where multi-
ple RWEs have the same identifier, or no identifier at all. Conversely, with well-controlled and inter-
nationally agreed ways of issuing/generating information system identifiers (e.g. GUID, ISO OID) it
is thought that such identifiers can be made reliable, and indeed correspond 1:1 with their intended
IEs. However, a problem with IEs is that there are often duplicates and also multiple versions in time,
each intended to represent the same RWE (such as a particular person, observation or composition).

As far as can be ascertained currently, there is no standard analysis taking into account the existence
of IEs and RWEs, and recognising the fact that multiple versions and/or duplicates may refer to the
same RWE.

The approach taken in openEHR with respect to identifiers is currently as follows.

• RWE identifiers such as social security numbers, licence numbers, etc are modelled with the
type DV_IDENTIFIER, which has the attributes:

- issuer: String
- id: String
- type: String

The attributes listed above are nearly the same as for the HL7 II type, indicating that the two
types may be compatible.

• Identification of IEs is done using the type OBJECT_ID, which is not a data type, and is doc-
umented in the Support Information Model. The OBJECT_ID type takes into account the
fact that there may be multiple IEs referring to the same underlying RWE by adding a ver-
sion identifier (assumed to be a timestamp).

12.2.3 Archetyping
The openEHR data types are defined on the assumption of archetype-based systems. While they will
work perfectly well in systems which know nothing about archetyping, some types are not defined
because archetypable structures built from more basic entities are assumed instead, rather than con-
cretely modelled data types. These include “types” for address and person name which are found in
HL7v3 and CEN 13606.

12.2.4 Treatment of Inbuilt Types
The HL7v3 data types do not make any assumptions about the existence of types typically built-in to
most object and relational formalisms, such as the basic types String, Integer, Boolean, Real,
Double, and the generic types Set<T>, Bag<T> and Array<T>. Hence, the types ST, INT, REAL,
BL, SET<T>, BAG<T> and so on are redefined by HL7. The supposed advantage of this approach is
that the semantics of all types in the HL7 system, right down to atomic data items are self-contained
Date of Issue: 12 Apr 2007 Page 82 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Comparison with HL7v3 Types
Rev 2.1.0
in the definition, and do not rely on external semantics. Possible problems with this approach include
the following.

• The HL7 definitions diverge from the OMG IDL and ISO 11404 definitions of the basic data
types, which could cause unexpected problems in software development and data process-
ing which is done in typical development technologies (object-oriented and relational).

• The HL7 types INT and REAL are defined as subtypes of the QTY type, a relationship that
does not exist in any object-oriented formalism for these types (in particular, there is no sub-
stitutability of a type called Integer or Real for a type called Qty built in to any object lan-
guage). The definitions of INT and REAL are also different from those found in most object
formalisms. This might cause some difficulty in implementation.

• The binary data type BIN is represented as a List<BL> (where each item can be True,
False, null), whereas it would normally be expected to be something like Array<Octet>
(i.e. an array of bytes) in most software environments. There does not appear to be any util-
ity in defining it as List<BL>, since binary data is almost without exception represented
and processed as contiguous arrays of machine bytes.

• The string type ST inherits from the encapsulated data type ED, which in turn inherits from
the binary data type BIN. The result of this is that an instance of ST contains numerous data
attributes relating to multi-media data, and the content is presumably represented as a
List<BL>. This is a major departure from the standard understanding of a string in compu-
ter sciences, which is usually simply an array of characters.

• The HL7 boolean type BL is a three-valued logic type due to the null marker approach (see
below), not the usual two-valued type found in the Boolean concept in programming lan-
guages. The same is true of INT and REAL: due to the null marker design, “null” is a possi-
ble return value of an integer or real as well as true integer and real values.

In general, where differences exist between same-named types in HL7 and an underlying formalism
such as a programming language, there is likely to be some confusion in implementation. Further,
there is likely to be confusion in how to process instances of basic types which contain numerous (and
sometimes recursive) fields which are not used in the standard specifications of basic types.

The openEHR approach with respect to inbuilt types is to assume only those types found in the main-
stream object-oriented programming languages, and in particular, definitive formalisms like OMG
IDL and XML. While this means there there is in theory less control over these types than in the HL7
approach, the number of types involved is quite small, and the problem of bindings to the basic types
of object formalisms is well understood. Additionally, since it is recognised that some data types
defined by openEHR could clash with types found in some languages and libraries, all data type class
names are prefaced with “DV_” to avoid naming confusion, and to allow implementations of
openEHR types to co-exist with existing types in implementation formalisms.

12.2.5 Use of Null Markers
All HL7 data types inherit from the ANY class (equivalent to the DATA_VALUE class in openEHR)
which contains the attributes:

BL nonNull;
CS nullFlavor;
BL isNull;

The purpose of these attributes is to indicate whether a datum is Null, and for what reason. Since
some data type classes also appear as the attributes of other data types, the Null markers also indicate
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 83 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Comparison with HL7v3 Types Data Types Information Model
Rev 2.1.0
whether any part of a datum is null. Thus, in the class Interval<T> shown below, all attributes have
the possibility of containing a Null marker.

type Interval<T> alias IVL<T> extends Set<T>
{

T low;
BL lowClosed;
T high;
BL highClosed;
T.diff width;
T center;
IVL<T> hull(IVL<T> x);

literal ST;
promotion IVL<T> (T x);
demotion T;
};

For example, this allows an interval with missing ends and width to exist as a structured type. The
consequence of the approach is that the entire model is essentially a model of “partial” data types; any
attribute and any function call may return a Null value, as well as the true values of its type (in fact, in
the specification, Null values are defined to be valid values of all data types). This design decision
was taken in HL7 so that any datum, no matter how unknown, would be structurally representable in
the same way as completely known data, enabling it to be processed in the same way as all other
instances of the same type.

However, an important object-oriented design principle has been ignored in this approach. In the
proper design of classes, properties and class invariants are stated. Invariants are statements which
describe the correctness conditions of instances of the class; the general rule is that the post-condition
of a creation routine (constructor) of a class must be that the invariants are satisfied. For example, an
invariant of the HL7 IVL<T> class could be:

(exists(low) and exists(high)) or else
(exists(low) and exists(width)) or else
(exists(width) and exists(high))

When an instance of this class is created, this condition should be satisfied, and remain satisfied for
the life of the instance. To do otherwise is to create instances of data which other software can make
no assumptions about, and is forced to check every single field, and then determine what to do in an
ad hoc way. (See [6] p366, [4] p43, [5] p29 for detailed explanations of the invariant concept).

Possible consequences of the built-in Null marker design approach include:

• since even HL7’s basic types ST, INT, REAL, LIST<>, SET<> include null markers, process-
ing of null values will be pervasive at the lowest level;

• software will be more complex, both implementations of the data types, and of software
which handle them. This is because the software always has to deal with the possibility of
calls to routines and attributes returning Null values. Most clinical information systems to
date have taken the approach that a datum is either represented as an instance of a formal
type if fully known, or else as narrative text if only partial;

• data may not be always be safely processable, since some software may not properly handle
the null values associated with attributes of partially known data items. Essentially, all soft-
ware which processes the data has to be “null-value aware”, and make no assumptions at all
about whether a particular data instance is valid or not.

The HL7 data type model is in contrast with simpler approaches such as used in CEN, GEHR, and
openEHR, where data types are formal models of types such as Coded_term, Quantity and so on.
Date of Issue: 12 Apr 2007 Page 84 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Comparison with HL7v3 Types
Rev 2.1.0
Rather than build the possibility of null markers into every attribute and class in the data types, a sin-
gle null marker is defined in relevant containing classes. This decision is based on the principle that
data types should be defined independently of their context of use. Hence, where data types are used
as data values, such as in the value attribute of the class ELEMENT from the openEHR EHR reference
model, the parallel features is_null and null_flavour are also defined. However, where data types
appear as attributes elsewhere in the model and there is no possibility of them being null, no null
markers are used. FIGURE 13 shows visually the difference between the two approaches.

The consequences of the standard software-engineering approach include:

• data types can be more easily formally specified, since the semantics of invariants, attributes
and operations do not need to include the possibility of null values;

• software implementations are simpler;
• data are always guaranteed to be safely processable for decision support and general query-

ing, since no instance of a formal type will be created in the first place if the datum is very
unreliable;

• null markers only appear in models where they are relevent, rather than everywhere data
types are used;

• however, the openEHR data types do not automatically deal with missing or unknown inter-
nal attribute values (such as missing high and low values for an interval, partial dates etc).

In order to deal with the last possibility, various approaches are used in openEHR:

• for most data which is not fully known, no data type instance is created, and a null marker is
created. Depending on the design of the revelant archetypes, there will usually be the possi-
bility of recording the datum in narrative form;

• ENTRYs in the openEHR EHR reference model include a certainty:Boolean attribute, for
recording a level of doubt;

val
val
val
val
val

Data

FIGURE 13 HL7 and Typical Null value approaches.

HL7

Typical

Value #1
Data
Value #3

null + flavour
val

val

val

val

Data
Value #2

null + flavour
null + flavour

null + flavour

val
val

null flavour

val
val
val
val
val

approach

approach

null flavour
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 85 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Comparison with HL7v3 Types Data Types Information Model
Rev 2.1.0
• for particular data types which are often partial, special features are defined. The main types
affected are DV_DATE, DV_TIME, and DV_DATE_TIME; the properties month_unknown,
day_unknown, minute_unknown, and second_unknown (based on ISO 8601 semantics) are
used to define explicitly the semantics of dates with a missing day, times with missing sec-
onds and so on;

• Intervals of date/time types include types generated when the parameter type is one of the
partial classes, thus, types DV_INTERVAL<DV_DATE> (where one or both ends has an
unknown part) are possible. This covers the need for intervals in which some date is missing
from the end date/times, while not allowing intervals with completely missing items to be
created;

• for expressing uncertainy more precisely, probability distribution data types (based on the
types defined in HL7) can be used.

A consequence of the HL7 model is that data instances represented in XML or another structured text
format will be structurally the same regardless of whether there are Null values or not. A structured
form for partially known data (which would normally break the invariants of its class) may well be
useful for representing the data as part of a text field, making it easier to use for whatever processing
is possible later on.

12.2.6 Terminology Approach
The approach in openEHR is to assume the existence of a Terminology Server which is the sole
authoritative interface with terminologies of any kind, and is the only entity which can assume
responsibility for querying, post-coordination or other manipulations of terms. No allowance is made
for coordination of “modifiers”, “qualifiers” or any other terms outside the service. As a consequence,
there are no coordination facilities in the type DV_CODED_TEXT, a departure from earlier versions of
the specification - any term provided from the terminology service must already be “coordinated”,
either by the terminology service, or by one of the terminologies it accesses. This places the responsi-
bility of combining terms firmly in the knowledge part of the system, and prevents unsanctioned,
unvalidated combinations being created elsewhere.

12.2.7 Date/Time Approach
The HL7 specification uses a single TS type to represent all logical dates, times, date/times, and par-
tial versions thereof. The openEHR specification defines distinct types for each, since these are the
types which occur in the real world, and it is easier to specify correctness constraints with this
approach. It is recognised that a single type may be used by some implementors (depending on what
is available in the language being used), however, the recommended practice is to wrap any such
types with the logical types described in this specification. This approach reduces the possibility for
any errors in transmitted data (since no strange combinations of year, ... , second can occur not explic-
itly described in the type definitions).

12.2.8 Time Specification Types
The HL7 approach for time specification appears to cover all reasonable requirements, but has some
minor problems, including:

• the types PIVL and EIVL are declared as being generic types (i.e. PIVL<T:TS>,
EIVL<T:TS>), when there appears to be no reason for this;

• the PIVL.phase attribute is used to represent an interval during which a activity occurs,
example given is "2 minutes every 8 hours". However, the "2 mins" is almost always part of
a therapeutic prescription of some kind, not part of the timing specification as such. Thera-
Date of Issue: 12 Apr 2007 Page 86 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model Comparison with HL7v3 Types
Rev 2.1.0
peutic prescriptions have the form "do X every Y time", where the X describes what to do,
and how long to do it for (e.g. 40 mins massage, administer a drug slowly over 10 mins). In
fact, what we are really interested in with a timing specification is the specification of the
starting points in time of some activity, not a time-based graph of on/off points, whch is
effectively what the PIVL type is now.

12.2.9 Type Conversions
The HL7v3 data types specification allows various type conversions, as follows:

Three kinds of type conversions are defined: promotion, demotion, and character string liter-
als. Type conversions can be implicit or explicit. Implicit type conversion occurs when a certain
type is expected (e.g. as an argument to a statement) but a different type is actually provided.

One notable kind of conversion possible in HL7 is of a value of any type T into an instance of
Set<T>, List<T>, Bag<T> or IVL<T> containing the value.

The openEHR model does not provide for any type conversions other than those automatically avail-
able between inbuilt basic numeric types such as Integer, Float and Double, and between types related
by inheritance, as supported by all object-oriented languages.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 87 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Comparison with HL7v3 Types Data Types Information Model
Rev 2.1.0
Date of Issue: 12 Apr 2007 Page 88 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model References
Rev 2.1.0
A References

A.1 General
1 Berners-Lee T. "Universal Resource Identifiers in WWW". Available at ht-

tp://www.ietf.org/rfc/rfc2396.txt. This is a World-Wide Web RFC for global
identification of resources. In current use on the web, e.g. by Mosaic, Netscape and similar
tools. See http://www.w3.org/Addressing for a starting point on URIs.

2 Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems.
See http://www.deepthought.com.au/it/archetypes.html.

3 Beale T et al. Design Principles for the EHR. See http://www.deepthought.com.au/openEHR.

4 Booch G. Object-Oriented Analysis and Design with applications. 2nd ed. Benjamin/Cum-
mings 1994.

5 Kilov H. Information Modelling - an object-oriented approach. Prentice Hall 1994.

6 Meyer B. Object-oriented Software Construction, 2nd Ed. Prentice Hall 1997.

7 Richards E G. Mapping Time - The Calendar and its History. Oxford University Press 1998.

8 Schadow G, McDonald C J. The Unified Code for Units of Measure, Version 1.4, April 27,
2000. Regenstrief Institute for Health Care, Indianapolis. See http://aurora.rg.iu-
pui.edu/UCUM

9 ISO 8601 standard describing formats for representing times, dates, and durations. See e.g.
http://www.mcs.vuw.ac.nz/technical/software/SGML/doc/iso8601/ISO8601.html and ht-
tp://www.cl.cam.ac.uk/~mgk25/iso-time.html.

A.2 European Projects
10 Dixon R, Grubb P, Lloyd D. EHCR Support Action Deliverable 3.5: "Final Recommendations

to CEN for future work". Oct 2000. Available at http://www.chime.ucl.ac.uk/HealthI/EHCR-
SupA/documents.htm.

A.3 CEN
11 ENV 13606-1 - Electronic healthcare record communication - Part 1: Extended architecture.

CEN/ TC 251 Health Informatics Technical Committee.

12 ENV 13606-2 - Electronic healthcare record communication - Part 2: Domain term list. CEN/
TC 251 Health Informatics Technical Committee.

13 ENV 13606-3 - Electronic healthcare record communication - Part 3: Distribution rules. CEN/
TC 251 Health Informatics Technical Committee.

A.4 GEHR Australia
14 Beale T, Heard S. GEHR Technical Requirements. See http://www.gehr.org/technical/require-

ments/gehr_requirements.html.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 89 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/Addressing
http://www.deepthought.com.au/it/archetypes.html
http://www.deepthought.com.au/it/archetypes.html
http://aurora.rg.iupui.edu/UCUM
http://aurora.rg.iupui.edu/UCUM
http://www.mcs.vuw.ac.nz/technical/software/SGML/doc/iso8601/ISO8601.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.cl.cam.ac.uk/~mgk25/iso-time.html
http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/documents.htm
http://www.chime.ucl.ac.uk/HealthI/EHCR-SupA/documents.htm
http://www.gehr.org/technical/requirements/gehr_requirements.html
http://www.gehr.org/technical/requirements/gehr_requirements.html

References Data Types Information Model
Rev 2.1.0
A.5 HL7
15 Schadow G, Biron P. HL7 version 3 deliverable: Version 3 Data Types. (2nd ballot 2002 ver-

sion).
Date of Issue: 12 Apr 2007 Page 90 of 91 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

Data Types Information Model
Rev 2.1.0

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 91 of 91 Date of Issue: 12 Apr 2007

© 2003-2007 The openEHR Foundation.
email: info@openEHR.org web: http://www.openEHR.org

END OF DOCUMENT

	Copyright Notice
	Amendment Record
	Acknowledgements
	Table of Contents
	1 Introduction
	1.1 Purpose
	1.2 Related Documents
	1.3 Status
	1.4 Peer review
	1.5 Conformance

	2 Background
	2.1 Scope
	2.2 Design Criteria
	2.3 Prior Work

	3 Introduction
	3.1 Overview
	3.2 Package Structure

	4 Basic Package
	4.1 Overview
	4.1.1 Requirements
	4.1.2 Design

	4.2 Class Descriptions
	4.2.1 DATA_VALUE Class
	4.2.2 DV_BOOLEAN Class
	4.2.3 DV_STATE Class
	4.2.4 DV_IDENTIFIER Class

	5 Text Package
	5.1 Overview
	5.1.1 Requirements
	5.1.1.1 Narrative Text
	5.1.1.2 Terminological Entities

	5.1.2 Design
	5.1.3 Qualification
	5.1.4 Meaning Modification
	5.1.4.1 Mode-changing Terms
	5.1.4.2 Context Sensitivity
	5.1.4.3 Negation
	5.1.4.4 Representation of Meaning-Modifying Terms

	5.1.5 Mappings
	5.1.5.1 Classification (Broader Terms)
	5.1.5.2 Equivalent / Synonymous Terms
	5.1.5.3 More Specific Mappings (Narrower Terms)
	5.1.5.4 The Unified Medical Language System (UMLS)
	5.1.5.5 Legacy Mapping Scenarios

	5.1.6 Language Translations

	5.2 Class Descriptions
	5.2.1 DV_TEXT Class
	5.2.2 TERM_MAPPING Class
	5.2.3 CODE_PHRASE Class
	5.2.4 DV_CODED_TEXT Class
	5.2.5 DV_PARAGRAPH Class

	6 Quantity Package
	6.1 Overview
	6.1.1 Requirements
	6.1.2 Design

	6.2 Class Descriptions
	6.2.1 DV_ORDERED Class
	6.2.2 DV_INTERVAL<T : DV_ORDERED> Class
	6.2.3 REFERENCE_RANGE<T:DV_ORDERED> Class
	6.2.4 DV_ORDINAL Class
	6.2.5 DV_QUANTIFIED Class
	6.2.6 DV_AMOUNT Class
	6.2.7 DV_QUANTITY Class
	6.2.8 Units Syntax
	6.2.9 DV_COUNT Class
	6.2.10 DV_PROPORTION Class
	6.2.11 PROPORTION_KIND Class
	6.2.12 DV_ABSOLUTE_QUANTITY Class

	7 Date Time Package
	7.1 Overview
	7.1.1 Requirements
	7.1.2 Design

	7.2 Class Descriptions
	7.2.1 DV_TEMPORAL Class
	7.2.2 DV_DATE Class
	7.2.3 DV_TIME Class
	7.2.4 DV_DATE_TIME Class
	7.2.5 DV_DURATION Class

	8 Time_specification Package
	8.1 Overview
	8.1.1 Requirements
	8.1.2 Design

	8.2 Class Descriptions
	8.2.1 DV_TIME_SPECIFICATION Class
	8.2.2 DV_PERIODIC_TIME_SPECIFICATION Class
	8.2.2.1 Phase-linked Time Specification Syntax
	8.2.2.2 Event-linked Periodic Time Specification Syntax

	8.2.3 DV_GENERAL_TIME_SPECIFICATION Class
	8.2.3.1 General Time Specification Syntax

	9 Encapsulated Package
	9.1 Overview
	9.1.1 Requirements
	9.1.2 Design

	9.2 Class Descriptions
	9.2.1 DV_ENCAPSULATED Class
	9.2.2 DV_MULTIMEDIA Class
	9.2.3 DV_PARSABLE Class

	10 Uri Package
	10.1 Overview
	10.1.1 Requirements
	10.1.2 Design

	10.2 Definitions
	10.3 Class Descriptions
	10.3.1 DV_URI Class
	10.3.2 DV_EHR_URI Class
	10.3.2.1 DV_EHR_URI Syntax

	11 Implementation Strategies
	11.1 Overview
	11.2 Quantities and Ordered_numeric
	11.3 Unicode
	11.4 Dates and Times

	12 Comparison with HL7v3 Types
	12.1 Scope
	12.2 Design Differences
	12.2.1 Naming
	12.2.2 Identification
	12.2.3 Archetyping
	12.2.4 Treatment of Inbuilt Types
	12.2.5 Use of Null Markers
	12.2.6 Terminology Approach
	12.2.7 Date/Time Approach
	12.2.8 Time Specification Types
	12.2.9 Type Conversions

	A References
	A.1 General
	A.2 European Projects
	A.3 CEN
	A.4 GEHR Australia
	A.5 HL7

