Architecture Overview

Rev 1.0.2

EHR

public
Release 1.0 comment
= =
- = openEHR Architecture
UCL ocean : :
——— informatics AFChlteCture OveereW

Editors:{T Beale, S Heard}], {D Kalra, D Lloyd}2

Revision: 1.0.2

Pages: 45

1. Ocean Informatics Australia

2. Centre for Health Informatics and Multi-professional Educa-
tion, University College London

© 2003-2006 The openEHR Foundation

The openEHR foundation

is an independent, non-profit community, facilitating the creation and sharing
of health records by consumers and clinicians via open-source, standards-
based implementations.

Founding David Ingram, Professor of Health Informatics, CHIME, University
Chairman College London

Founding Dr P Schloeffel, Dr S Heard, Dr D Kalra, D Lloyd, T Beale
Members

email: info@openEHR.org web: http://www.openEHR.org

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 1 of 45 Date of Issue: 06 Mar 2006
© 2003-2006 The openEHR Foundation

email: info@openEHR.org web: http://www.openEHR.org

http://www.openEHR.org

Architecture Overview

Rev 1.0.2
Copyright Notice
© Copyright openEHR Foundation 2001 - 2006
All Rights Reserved
1. This document is protected by copyright and/or database right throughout the

Date of Issue: 06 Mar 2006

world and is owned by the openEHR Foundation.

You may read and print the document for private, non-commercial use.

You may use this document (in whole or in part) for the purposes of making
presentations and education, so long as such purposes are non-commercial and
are designed to comment on, further the goals of, or inform third parties

about, openEHR.

You must not alter, modify, add to or delete anything from the document you
use (except as is permitted in paragraphs 2 and 3 above).

You shall, in any use of this document, include an acknowledgement in the form:
"© Copyright openEHR Foundation 2001-2006. All rights reserved. www.openEHR.org"
This document is being provided as a service to the academic community and on
a non-commercial basis. Accordingly, to the fullest extent permitted under
applicable law, the openEHR Foundation accepts no liability and offers no
warranties in relation to the materials and documentation and their content.

If you wish to commercialise, license, sell, distribute, use or otherwise copy

the materials and documents on this site other than as provided for in

paragraphs 1 to 6 above, you must comply with the terms and conditions of the
openEHR Free Commercial Use Licence, or enter into a separate written agreement
with openEHR Foundation covering such activities. The terms and conditions of
the openEHR Free Commercial Use Licence can be found at
http://www.openehr.org/free_commercial use.htm

Page 2 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview

Rev 1.0.2
Amendment Record
Issue Details Raiser Completed
1.0.2 CR-000203: Release 1.0 explanatory text improvements. T Beale 06 Mar 2006
Improved path explanation. Slight re-ordering of main head-
ings.
1.0.1 CR-000200. Correct package names in RM diagram. D Lloyd 23 Feb 2006
Added configuration management and versioning material T Beale

from Common IM.

Added section on ontological landscape.
Added section on aims.

Added section on systems architectures.

RELEASE 1.0

1.0 Initial Writing - content taken from Roadmap document. T Beale 29 Jan 2006
CR-000147. Make DIRECTORY Re-usable

CR-000167. Move AOM description package to resource pack-
age in Common IM.

CR-000185: Improved EVENT model.

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 3 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview
Rev 1.0.2

Acknowledgements
The work reported in this paper has been funded by the University College, London; Ocean Informat-
ics, Australia.

CORBA is a trademark of the Object Management Group

.Net is a trademark of Microsoft Corporation

Date of Issue: 06 Mar 2006 Page 4 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview

Rev 1.0.2
1 L L1001 T 1 14 1 PN 7
1.1 PUIPOSE ...t e 7
1.2 Related DOCUMENLScoveeiiriiiiiiieriieiceieeee e 7
1.3 STALUS ...ttt 7
1.4 PEOT TEVIEW ..ottt et e e e 7
2 OVEIVIEW ..uuunriiinisnniecsssnnncsssssnecsssssncssssssesssssssesssssssssssssssssssssssses 9
2.1 The openEHR Specification Project...........ccoeceeviiniiiiniiniiiieeiie 9
3 AIIS uueiiiiiinriinssnnecsssnsnesssssncssssssessssssssssssssesssssssssssssssssssssssssnss 10
4 Design PrincCiples....cciiicciivcnnriiccssssnnnneccsssssnnnneccssssnssseccsnes 12
4.1 Ontological SeParationccceceeercuieeriieerieeeie e e eeree e 12
4.2 Separation of Responsibilitiesc..ccceeeereriiiriineniinicniccicneceeee 13
4.3 Separation of VIEWPOINLScceeeuieriiiiiieiieeiiesie et 13
5 openEHR Package Structureeeeeecccccccnnrccccsccnnnnecccnes 16
5.1 OVEIVIBW ...ttt sttt ettt ettt ettt sttt et e b eaees 16
5.2 Reference Model (RM)ooviiiiiiiieiieeieeceece e e e 16
5.2.1 Package OVEIVIEWccccoieriiiiiniiniiiieieeieeteseee e 16
53 Archetype Model (AM)ooevieiiiiiieiieceee et 19
5.4 Service Model (SM)....cociiieiieeieece et 19
6 Scope of ArchitecCture......ceeeeeiccsisssnnerccsssssnnennccssssnnssnnccssssnnns 21
6.1 Correspondence to System ArchiteCtures........coeveeeeveercreeerveeerveennne, 21
6.2 Top-level Information Structures........c..ccoceeeereevienienenicneeneeieeeeanen 22
7 VEISIONING ...ccuueiiiiiiinniicsssnnicsssnsnesssnsncsssssesssssssessssssnsssssssssssnns 24
7.1 OVEIVIEW ...tiieiieeeiiee ettt e et e e etee e teeeseaeestaeeeaaeesssaeessseeesaseesssseesanseennnes 24
7.2 The Configuration Management Paradigm...........cccccoeevienieeiiennennnnn, 24
7.2.1 Organisation of the Repository........ccccvvveeviieerciieeiiiecieecie e 25
7.2.2 Change Managementccoeevereenenieneenieniene e 25
7.3 Managing Change in TIMe.........ccccceeriieiiierieeiienie et 26
7.3.1 General Model of a Change-controlled Repository....................... 27
8 IdentifiCationcccoeivevneneccssssnnnnncccssssnnneccssssnnsneccssssnnsssesssaes 29
8.1 General SChemEooueiiiiiiiiiie e 29
8.2 Levels of Identification..........c..ccccveieiieeeiiieccieeeee e 29
9 DA V1 1% 00 10O 31
9.1 OVEIVIEWviieiieeeiieeeite e et e e et e e te e e seaeeetaeesaaeesssaeesaseeeraseesssseesnnseennnes 31
9.2 Scope of Archetypes and Templates.........ccccceevveeeeiienieecieenieeiieeee, 31
9.3 Archetype-enabling of Data..........ccceevvieiiiieiiie e, 32
94 Archetypes, Templates and Pathscccoocoiiiiiiiiiiii, 33
10 Paths and LOCAtOrscccevceeiiiscnriccssnnncsssnnncsssnsnecssnssncssnsens 34
10.1 OVEIVIEWtiiitieeeiete ettt et e e e e te e e eaaeestaeesssaeesaseeensseeeaseesssseesnnseennnes 34
10.2 Pathis ..o e 34
10.2.1 BasiC SYNTAX ...iovviiiiiiieiiie ettt 34
10.2.2 Predicate EXPressionsc.eeiieeiieniierieenie et 34
10.2.3 Paths within Top-level Structures...........ccceeeveevieeiienieeiienieeiee 35
10.2.4 Runtime Paths and Uniquenessccceeeeuveercrieenciieeniee e 36
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 5 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR .org web: http://www.openEHR.org

Rev 1.0.2
10.3 EHR URIS ..ottt 38
10.3.1 Locating Top-Level Structures..........ccveevieeeiieeecieeeieeeiee e 38

11 Relationship to Standardseeeecrvvcvnnereccssccnnneccsscccnnneeees 40

12 Implementation Technology Specifications.......c..cccceeecuneeee. 42
12.1 Overview

A | 243 13 (S 1 TS PPN X)

Architecture Overview

Date of Issue: 06 Mar 2006 Page 6 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Introduction
Rev 1.0.2

1 Introduction

1.1 Purpose

This document provides an overview of the openEHR architecture in terms of a model overview, key
global semantics, relationship to published standards, and finally the approach to building Implemen-
tation Technology Specifications (ITSs). Semantics specific to each information, archetype and serv-
ice model are described in the relevant model.

The intended audience includes:

Standards bodies producing health informatics standards
Software development groups using openEHR
Academic groups using openEHR

The open source healthcare community

1.2 Related Documents
Prerequisite documents for reading this document include:

The openEHR Roadmap document
The openEHR Modelling Guide
Other documents describing related models, include:

The openEHR Information Model documents
The openEHR Archetype Model documents

1.3 Status

This document is under development, and is published as a proposal for input to standards processes
and implementation works.

This document is available at http://svn.openehr.org/specification/TAGS/Release-
1.0/publishing/architecture/overview.pdf.

The latest version of this document can be found at http://svn.openehr.org/specifica-
tion/TRUNK/publishing/architecture/overview.pdf.

New versions are announced on openehr-announce@Ropenehr.org.

Blue text indicates sections under active development.

1.4 Peer review

Areas where more analysis or explanation is required are indicated with “to be continued” paragraphs
like the following:

To Be Continued: more work required

Reviewers are encouraged to comment on and/or advise on these paragraphs as well as the main con-
tent. Please send requests for information to infoRopenEHR.org. Feedback should preferably be
provided on the mailing list openehr-technical@openehr.org, or by private email.

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 7 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://svn.openehr.org/specification/TRUNK/publishing/architecture/overview.pdf
http://svn.openehr.org/specification/TRUNK/publishing/architecture/overview.pdf
http://svn.openehr.org/specification/TAGS/Release-1.0/publishing/architecture/overview.pdf
http://svn.openehr.org/specification/TAGS/Release-1.0/publishing/architecture/overview.pdf
mailto:openehr-technical@openehr.org
mailto:openehr-announce@openehr.org
mailto:info@gehr.org
mailto:openehr-technical@openehr.org

Introduction Architecture Overview
Rev 1.0.2

Date of Issue: 06 Mar 2006 Page 8 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Overview
Rev 1.0.2

2 Overview

This document provides an overview of the openEHR architecture. It commences with a description
of the specification project, followed by an overview of the reference model structure and packages.
Key global semantics including archetyping, identification, version and paths are then described. The
relationship to published standards is indicated, and finally, the approach to building Implementation
Technology Specifications (ITSs) is outlined.

2.1 The openEHR Specification Project

FIGURE 1 illustrates the openEHR Specification Project. The project consists of requirements, archi-
tectural specifications, implementation technology specifications (ITSs), and conformance specifica-
tions. The focus of this document is the architectural and implementation technology specifications
(ITSs).

/ - grm e \
Specifications I, Architecture \
______ P o
¥ ¥ | B an
__________ - Ly Loy 'L Y ITSs
/) A | RM Ly AM | SM P | J
' Requirements | ! L L S
N | l\] l\) l\] |
. -~ - - -"- - -—-"="=7- - - - --7)
A \
| Conformance |
\ /I
N /

FIGURE 1 openEHR Specification project

The architecture specifications consist of the Reference Model (RM), the Service Model (SM) and
Archetype Model (AM). The first two correspond to the ISO RM/ODP information and computa-
tional viewpoints respectively.

All of the architecture specifications published by openEHR are defined as a set of abstract models,
using the UML notation and formal textual class specifications. These models remain the primary ref-
erences for all semantics, regardless of what is done in any implementation domain. The openEHR
Modelling Guide describes the semantics of the models. The presentation style of these abstract spec-
ifications is deliberately intended to be clear, and semantically close to the ideas being communi-
cated. Conversely, the abstract specifications do not follow idioms or limitations of particular
programming languages, schema languages or other formalisms. All such expressions are treated as
ITSs, for which explicit mappings generally have to be developed and described (since almost no for-
malism natively implements complete UML semantics).

There are numerous implementation technologies, ranging from programming languages, serial for-
malisms such as XML, to database and distributed object interfaces. Each of these has its own limits
and strengths. The approach to implementing any of the openEHR abstract models in a given imple-
mentation technology is to firstly define an “implementation technology specification” (ITS) for the
particular technology, then to use it to formally map the abstract models into expressions in that tech-
nology.

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 9 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR .org web: http://www.openEHR.org

Aims Architecture Overview
Rev 1.0.2

3 Aims

Types of System

This section provides a brief overview of the aims of the openEHR specifications, as an aid to under-
standing the remainder of the document. The architecture of openEHR is designed to support the con-
struction of a number of types of system. One of the most important could be characterised as a
distributed, patient-centred, life-long, shared care health record, illustrated in FIGURE 2.

local
hospital

azfazizs
HHCEPR

patient-centred

shared EHR

longitudinal
secure

FIGURE 2 Community Shared-care Context

In this form, the openEHR services are added to the existing IT infrastructure provide a shared, secure
health record for patients that are seen by any number of health providers in their community context.
openEHR-enabled systems can also be used to provide EMR/EPR functionality at provider locations.
Overall, a number of important categories of system can be implemented using openEHR including
the following:

shared-care community or regional health service EHRs;

summary EHRs at a national, state, province or similar level;

small desktop GP systems;

hospital EMRs;

consolidated and summary EHRs in federation environments;

legacy data purification and validation gateways;

web-based secure EHR systems for mobile patients.

Requirements

The openEHR architecuture embodies 15 years of research from numerous projects and standards
from around the world. It has been designed based on requirements captured over many years.
Among the global requirements of EHRs and EHR systems supported by openEHR are the following:

a life-long EHR;

Date of Issue: 06 Mar 2006 Page 10 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Aims
Rev 1.0.2

prioritises the patient / clinician interaction;

medico-legal faithfulness, traceability, audit-trailing;

technology & data format independent;

facilitate sharing of EHRs via interoperability at data and knowledge levels;

suitable for both primary & acute care;

integrates with any/multiple terminologies;

supports all natural languages, as well as translations between languages in the record;
support for patient privacy, including anonymous EHRs;

support for clinical data structures: lists, tables, time-series, including point and interval
events;

support for all aspects of pathology data, including normal ranges, alternative systems of
units etc;

highly maintainable and flexible software;
compatibility with CEN 13606, Corbamed, and messaging systems;
support semi-automated and automated distributed workflows;
supports secondary uses: education, research, population medicine.
One comprehensive statement of EHR requirements covering many of the above is the ISO Technical

Report 18308! for which an openEHR profile has been created”. The requirements summarised above
are described in more detail in the openEHR EHR Information Model document.

1. seehttp://www.openehr.org/downloads/ISOEHRRequirements.zip

2. seehttp://svn.openehr.org/specification/TRUNK/publishing/require-
ments/i1s018308 conformance.pdf

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 11 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.openehr.org/downloads/ISOEHRRequirements.zip
http://svn.openehr.org/specification/TRUNK/publishing/requirements/iso18308_conformance.pdf
http://svn.openehr.org/specification/TRUNK/publishing/requirements/iso18308_conformance.pdf

Design Principles Architecture Overview
Rev 1.0.2

4 Design Principles

The openEHR approach to modelling information, services and domain knowledge is based on a
number of design principles, described below. All of these principles lead to a separation of the mod-
els of the openEHR architecture, and consequently, a high level of componentisation. This leads to
better maintainability, extensibility, and flexible deployment.

4.1 Ontological Separation

The most basic kind of separation in any system of models is ontological, i.e. in the semantic dimen-
sion. All models carry some kind of semantic meaning, but not all semantics are the same, or even of
the same category. For example, some part of the SNOMED-CT terminology will describe types of
bacterial infection, sites in the body, and symptoms. An information model might specify a logical
type Quantity. A content model might define the model of information collected in an ante-natal
examination by a physician. These types of information are qualitatively different, and need to be
developed and maintained separately within the overall model eco-system. FIGURE 3 illustrates
these distinctions, and indicates what parts are built directly into software and databases.

7~ ontologies of everything \
ﬂ)ntologies of information ﬂ)ntologies of reality N\
domain content models\ classifications\ /“classification
(variable) mediat tools
openEHR archetypes ICDx guidelines
& templates j ICPC LOINC

information representation
models (stable)

‘ openEHR
Reference Model

descriptive terminologies

openEHR SNOMED-CT
Service Model K /
openEHR |angua§;sl_<1 Lir;lraesentatlon oWL
Archetype Model UML programming languages

languages

FIGURE 3 The Ontological Landscape

This figure shows a primary separation between “ontologies of information” i.e. models of informa-
tion content, from “ontologies of reality” i.e. descriptions and classifications of real phenomena.
These two categories have to be separated because the authors, the representation and the purposes
are completely different. In health informatics, this separation already exists by and large, due to the
development of terminologies and classifications.

A secondary ontological separation within the “information” side is shown between information
models and domain content models. This separation is not generally well understood, and historically,
the entirety of informational semantics has been hard-wired into the software and databases, leading
to unmaintainable systems. One of the key paradigms on which openEHR is based is known as “two-
level” modelling, described in [2]. Under the two-level approach, a stable reference information

Date of Issue: 06 Mar 2006 Page 12 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Design Principles
Rev 1.0.2

model constitutes the first level of modelling, while formal definitions of clinical content in the form
of archetypes and templates constitute the second. Only the first level is implemented in software,
significantly reducing the dependency of deployed systems and data on variable content definitions.
The only other parts of the model universe implemented in software are highly stable languages/mod-
els of representation (shown at the bottom of the figure). As a consequence, systems have the possi-
bility of being far smaller and more maintainable. They are also inherently self-adapting, since they
are built to consume archetypes and templates as they are developed into the future.

Archetypes and templates also act as a well-defined semantic gateway to terminologies, classifica-
tions and computerised clinical guidelines. The alternative in the past has been to try to make systems
function solely with a combination of hard-wired software and terminology. This approach is flawed,
since terminologies don’t contain definitions of domain content (e.g. “microbiology result”), but
rather facts about the real world (e.g. kinds of microbes and the effects of infection in humans).

By clearly separating the three elements - information models, domain content models, and terminol-
ogies - the openEHR architecture enables each to have a well-defined, limited scope and clear inter-
faces. This limits the dependence of each on the other, leading to more maintainable and adaptable
systems. The details of how archetypes and templates work in openEHR are described in Archetyping
on page 31.

4.2 Separation of Responsibilities

A second key design paradigm used in openEHR is that of separation of responsibilities within the
computing environment. Complex domains are only tractable if the functionality is first partitioned
into broad areas of interest, i.e. into a “system of systems” [5]. This principle has been understood in
computer science for a long time under the rubrics “low coupling”, “encapsulation” and “componen-
tisation”, and has resulted in highly successful frameworks and standards, including the OMG’s
CORBA specifications and the ISO Reference Model for Open Distibuted Processing (RM-ODP) [4].
Each area of functionality forms a focal point for a set of models formally describing that area, which,

taken together usually correspond to a distinct information system or service.

FIGURE 4 illustrates a notional health information environment containing numerous services, each
denoted by a bubble. Typical connections are indicated by lines, and bubbles closer to the centre cor-
respond to services closer to the core needs of clinical care delivery, such as the EHR, terminology,
demographics/identification and medical reference data. Of the services shown on the diagram,
openEHR currently provides specifications only for the more central ones, including EHR and Demo-
graphics.

Since there are standards available for some aspects of many services, such as terminology, image
formats, messages, EHR Extracts, service-based interoperation, and numerous standards for details
such as date/time formats and string encoding, the openEHR specifications often act as a mechanism
to create coherent structural definitions in the informational and computational viewpoints that inte-
grate existing standards.

4.3 Separation of Viewpoints

The third computing paradigm used in openEHR is a natural consequence of the separation of respon-
sibilities, namely the separation of viewpoints. When responsibilities are divided up among distinct
components, it becomes necessary to define a) the information that each processes, and b) how they
will communicate. These two aspects of models constitute the two central “viewpoints” of the ISO
RM/ODP model [4], which are as follows:

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 13 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR .org web: http://www.openEHR.org

OTHER
PROVIDER
ENTERPRISE

Allied
Health

Data
Warehousg

Warehouse

R esource

Location Patien

Administratio
Warehouse

Tri ers_ &
catlon

FUNCTIONAL

MINIMALLY &
FUNCTIONAI. MULTIMEDI A
GENETICS
EVENTS/
WORKFLOW

ital Sign
Monitors

h) .
e

online demographic
services

communications 7
component online
rescribin

g, online
knowledge interactions etc .online rguc;gﬁlcl)rr]|ees
component - vocabulary P

online model repositories

repositories
KEY \component

FIGURE 4 A Health Information Environment

Electrophysiolog

maging

Pathology

aleag Sewoy] 00z-100Z © buAdoo

Architecture Overview Design Principles
Rev 1.0.2

Enterprise: concerned with the business activities, i.e. purpose, scope and policies of the
specified system.

Information: concerned with the semantics of information that needs to be stored and processed
in the system.

Computational: concerned with the description of the system as a set of objects that interact at
interfaces - enabling system distribution.

Engineering: concerned with the mechanisms supporting system distribution.

Technological: concerned with the detail of the components from which the distributed system
is constructed.

The openEHR specifications accordingly include an information viewpoint - the openEHR Reference
Model - and a computational viewpoint - the openEHR Service Model. The Engineering viewpoint
corresponds to the Implementation Technology Specification (ITS) models of openEHR (see Imple-
mentation Technology Specifications on page 42), while the Technological viewpoint corresponds to
the technologies and components used in an actual deployment. An important aspect of the division
into viewpoints is that there is generally not a 1:1 relationship between model specifications in each
viewpoint. For example, there might be a concept of “health mandate” (a CEN ENV13940 Continuity
of Care concept) in the enterprise viewpoint. In the information viewpoint, this might have become a
model containing many classes. In the computational viewpoint, the information structures defined in
the information viewpoint are likely to recur in multiple services, and there may or may not be a
“health mandate” service. The granularity of services defined in the computational viewpoint corre-
sponds most strongly to divisions of function in an enterprise or region, while the granularity of com-
ponents in the information view points corresponds to the granularity of mental concepts in the
problem space, the latter almost always being more fine-grained.

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 15 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR .org web: http://www.openEHR.org

openEHR Package Structure Architecture Overview
Rev 1.0.2

5 openEHR Package Structure

5.1 Overview

FIGURE 6 illustrates the overall package structure of the openEHR formal specifications. Three
major packages are defined: rm, am and sm. All packages defining detailed models appear inside one
of these outer packages, which may also be thought of as namespaces. They are conceptually defined
within the org. openehr namespace, which is usually represented in UML as further packages. In
some implementation technologies (e.g. java), the org.openehr namespace may actually be used
within program texts.

rm sm am

FIGURE 5 Global Package Structure of openEHR

5.2 Reference Model (RM)

Within the any given namespace, each package defines a local context for definition of classes. FIG-
URE 6 illustrates the package structure in the RM namespace. An informal division into “scientific
computing” and “health information “ is shown. The packages in the latter group are generic, and are
used by all openEHR models, in all the outer packages. Together, they provide identification, access
to knowledge resources, data types and structures, versioning semantics, and support for archetyping.
The packages in the former group define the semantics of enterprise level health information types,
including the EHR and demographics.

Each outer package in FIGURE 6 corresponds to one openEHR specification document!, document-
ing an “information model” (IM). Where packages are nested, the inner packages cannot exist outside
of their parent package. The package structure will normally be replicated in all ITS expressions, e.g.
XML schema, programming languages like Java, C# and Eiffel, and interoperability definitions like
IDL and .Net.

5.2.1 Package Overview
The following sub-sections provide a brief overview of the RM packages.

Support Information Model
This package describes the most basic concepts, required by all other packages, and is comprised of
the Definitions, Identification, Terminology and Measurement packages. The semantics defined in

1. with the exception of the EHR and Composition packages, which are both described in the EHR Reference
Model document; this may change in the future.

Date of Issue: 06 Mar 2006 Page 16 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview

openEHR Package Structure

Rev 1.0.2
ehr ehr_extract
message
composition
content demographic
navigation entry
common
archetyped i i change_
yp generic directory control resource
data_structures
item_structure
representation history
data_types
quantity
basic text date_time t|_n]e_ . uri encapsulated
specification
support
definitions terminology measurement identification openEHR
Support
Terminology
m
assumed types Integer String List<T>
Boolean Interval<T>
Real Character Set<T>

FIGURE 6 Structure of org.openehr.rm package

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 17 of 45

© 2003-2006 The openEHR Foundation

Date of Issue: 06 Mar 2006

email: info@openEHR.org web: http://www.openEHR.org

openEHR Package Structure Architecture Overview
Rev 1.0.2

these packages allow all other models to use identifiers and to have access to knowledge services like
terminology and other reference data. The support package includes the special package
assumed_types, describing what basic types are assumed by openEHR in external type systems;
this package is a guide for integrating openEHR models proper into the type systems of implementa-
tion technologies.

Data Types Information Model

A set of clearly defined data types underlies all other models, and provides a number of general and
clinically specific types required for all kinds of health information. The following categories of
datatypes are defined in the data types reference model.

Text: plain text, coded text, paragraphs.

Quantities: any ordered type including ordinal values (used for representing symbolic ordered
values such as “+7, “++”, “+++), measured quantities with values and units, and so on.

Date/times: date, time, date-time types, and partial date/time types.
Encapsulated data: multimedia, parsable content.

Basic types: boolean, state variable.

Data Structures Information Model
In many reference models, generic data structures are available for expressing content whose particu-
lar structure will be defined by archetypes. The generic structures are as follows.

Single: single items, used to contain any single value, such as a height or weight.
List: linear lists of named items, such as many pathology test results.

Table: tabular data, including unlimited and limited length tables with named and ordered
columns, and potentially named rows.

Tree: tree-shaped data, which may be conceptually a list of lists, or other deep structure.

History: time-series structures, where each time-point can be an entire data structure of any
complexity, described by one of the above structure types. Point and interval samples are
supported.

Common Information Model

Several semantic concepts are used in common by various models. The classes LOCATABLE and
ARCHETYPED provide the link between information and archetype models. The classes ATTESTA-
TION and PARTICIPATION are generic domain concepts that appear in various reference models.
The last group of concepts consists of a formal model of change management which applies to any
service that needs to be able to supply previous states of its information, in particular the demographic
and EHR services.

EHR Information Model

The EHR IM defines the containment and context semantics of the concepts EHR, COMPOSITION,
SECTION, and ENTRY. These classes are the major coarse-grained components of the EHR, and corre-
spond directly to the classes of the same names in CEN EN13606:2005 and fairly closely to the “lev-
els” of the same names in the HL7 Clinical Document Architecture (CDA) release 2.0.

EHR Extract
The EHR Extract IM defines how an EHR extract is built from COMPOSITIONs, demographic, and
access control information from the EHR.

Date of Issue: 06 Mar 2006 Page 18 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview openEHR Package Structure
Rev 1.0.2

Demographics

The demographic model defines generic concepts of PARTY, ROLE and related details such as contact
addresses. The archetype model defines the semantics of constraint on PARTYs, allowing archetypes
for any type of person, organisation, role and role relationship to be described. This approach pro-
vides a flexible way of including the arbitrary demographic attributes allowed in the OMG HDTF
PIDS standard.

Workflow

Workflow is the dynamic side of clinical care, and consists of models to describe the semantics of
processes, such as recalls, as well as any care process resulting from execution of guidelines.

5.3 Archetype Model (AM)

The openEHR am package contains the models necessary to describe the semantics of archetypes and
templates, and their use within openEHR. These include ADL, the Archetype Definition Language
(expressed in the form of a syntax specification), the archetype and template packages, defining
the object-oriented semantics of archetypes and templates, and the openehr profile package,
which defines a profile of the generic archetype model defined in the archetype package, for use in
openEHR (and other health computing endeavours). The internal structure of the am package is
shown in FIGURE 7.

archetype template openehr_profile
constraint_model
Archetype
Definition . oo
Language (ADL) assertion | primitive
ontology data_types

FIGURE 7 Structure of the org.openehr.am package

54 Service Model (SM)

The openEHR service model includes definitions of basic services in the health information environ-
ment, centred around the EHR. It is illustrated in FIGURE 8. The set of services actually included
will undoubtedly evolve over time, so this diagram should not be seen as definitive.

Virtual EHR API

The virtual EHR API defines the fine-grained interface to EHR data, at the level of Compositions and
below. It allows an application to create new EHR information, and to request parts of an existing
EHR and modify them. This API enables fine-grained archetype-mediated data manipulation.
Changes to the EHR are committed via the EHR service.

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 19 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR .org web: http://www.openEHR.org

openEHR Package Structure Architecture Overview
Rev 1.0.2

EHR Service Model

The EHR service model defines the coarse-grained interface to electronic health record service. The
level of granularity is openEHR Contributions and Compositions, i.e. a version-control / change-set
interface. The finest object that can be requested or committed via the EHR service is a single Com-
position, or the EHR Directory structure.

Part of the model defines the semantics of server-side querying, i.e. queries which cause large
amounts of data to be processed, generally returning small aggregated answers, such as averages, or
sets of ids of patients matching a particular criterion.

virtual_ehr workflow
ehr demographic
archetype terminology

FIGURE 8 Structure of the org.openehr.sm package

Archetype Service Model
The archetype service model defines the interface to online repositories of archetypes, and can be

used both by GUI applications designed for human browsing as well as access by other software serv-
ices such as the EHR.

Terminology Interface Model

The terminology interface service provides the means for all other services to access any terminology
available in the health information environment, including basic classification vocabularies such as
ICDx and ICPC, as well as more advanced ontology-based terminologies. Following the concept of
division of responsibilites in a system-of-systems context, the terminology interface abstracts the dif-
ferent underlying architectures of each terminology, allowing other services in the environment to
access terms in a standard way. The terminology service is thus the gateway to all ontology- and ter-
minology-based knowledge services in the environment, which along with services for accessing
guidelines, drug data and other “reference data” enables inferencing and decision support to be car-
ried out in the environment.

Date of Issue: 06 Mar 2006 Page 20 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Scope of Architecture
Rev 1.0.2

6 Scope of Architecture

6.1 Correspondence to System Architectures

The previous section described the software package structure of the openEHR specifications. Here
we describe how the package architecture can be applied to building real systems. The general archi-
tectural approach in any openEHR system can be considered as 5 layers (i.e. a “5-tier” architecture).
The tiers are as follows.

1. persistence: data storage and retrieval.

2. back-end services: including EHR, demographics, terminology, archetypes, security, record
location, and so on. In this layer, the separation of the different services is transparent, and
each service has a coarse-grained service interface.

3. virtual EHR: this tier is the middleware, and consists of a coherent set of APIs to the vari-
ous back-end services providing access to the relevant services, thereby allowing user
access to the EHR; including EHR, demographics, security, terminology, and archetype
services. It also contains an archetype- and template-enabled kernel, the component respon-
sible for creating and processing archetype-enabled data. In this tier, the separation of back-
end services is hidden, only the functionality is exposed. Other virtual clients are possible,
consisting of APIs for other combinations of back-end services.

4. application logic: this tier consists of whatever logic is specific to an application, which
might be a user application, or another service such as a query engine.

5. presentation layer: this layer consists of the graphical interface of the application, where
applicable.

The same tiers can be used in large deployments, as shown in FIGURE 9, or simply as layers in sin-
gle-machine applications.

web
browser

Enterprise computing environment

5. presentation presentation
layer

4. application
logic

web portal

3. virtual client

secure LAN/ASP / ...

. : demo-
2. back-end EHR g identity el . knowledge
services service service R services

highspeed LAN / local

1. persistence Persistence

FIGURE 9 Basic Enterprise EHR System Architecture

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 21 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR .org web: http://www.openEHR.org

Scope of Architecture Architecture Overview
Rev 1.0.2

FIGURE 10 illustrates an approximate mapping of major parts of the openEHR software architecture
to the 5-tier scheme. Clearly where parts of the architecture are used will depend on various imple-
mentation choices; the mapping shown is therefore not definitive. Nevertheless, the principal use of
parts of the architecture is likely to be similar in most systems, as follows:

RM and AM: mainly used to construct an archetype- and template-processing kernel,

RM common.change control package: provides the logic for versioning in versioned
services such as the EHR and demographics;

SM: various service model packages define the exposed interfaces of major services;

SM virtual ehr package defines the API of the virtual EHR component;

archetypes: archetypes might be assumed directly in some applications, e.g. a specialist
peri-natal package might be partly based on a family of archetypes for this specialisation;

templates: both archetypes and templates will be used in the presentation layer of applica-
tions. Some will base the GUI code on them, while others will have either tool-generate
code, or dynamically generate forms based on particular templates and archetypes.

In the future, an abstract persistence API and optimised persistence models (transformations of the
existing RM models) are likely to be published by openEHR in order to help with the implementation
of databases.

presentation archetypes archetypes
layer templates templates
application
logic
virtual EHR
(kernel + querying)
. sm.ehr sm.demographic sm.archetype sm.terminology
services rm.common. rm.common.

change_control | change_control

persistence

FIGURE 10 Mapping of software architecture to systems

6.2 Top-level Information Structures

The openEHR information models define various informational artifacts at varying levels of granu-
larity. Fine-grained structures defined in the Support and Data types are used in the Data Structures
and Common models; these are used in turn in the EHR, EHR Extract, Demographic and other “top-
level” models. These latter models define the “top-level structures” of openEHR, i.e. content struc-
tures that can sensibly stand alone, and may be considered the equivalent of separate documents in a
document-oriented system. In openEHR information systems, it is the top-level structures that are of
direct interest to users. The major top-level structures include the following:

Composition - the committal unit of the EHR (see type COMPOSITION in EHR IM);
EHR Status - the status summary of the EHR (see type EHR STATUS in EHR IM);

Date of Issue: 06 Mar 2006 Page 22 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Scope of Architecture
Rev 1.0.2

Folder hierarchy - act as directory structures in EHR, Demographic services (see type
FOLDER in Common IM);

Party - various subtypes including Actor, Role, etc representing a demographic entity with
identity and contact details (see type PARTY and subtypes in Demographic IM);

EHR Extract - the transmission unit between EHR systems, containing a serialisation of
EHR, demographic and other content (see type EHR EXTRACT in EHR Extract IM).

All persistent openEHR EHR, demographic and related content is found within top-level information
structures.

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 23 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Versioning Architecture Overview
Rev 1.0.2

7 Versioning

71 Overview

Version control is an integral part of the openEHR architecture. An openEHR repository for EHR or
demographic information is managed as a change-controlled collection of “version containers” (mod-
elled by the VERSIONED OBJECT<T> class in the common.change control package), each con-
taining the versions of a top-level content structure (such as a Composition or Party) as it changes
over time. A version-controlled top-level content structure is visualised in FIGURE 11.

top-level
: audit trail content
Versions structure
(VERSION
class) | |

SN0 N IN
/N I /1IN |

Version container a single Version
(VERSIONED_OBJECT class)

FIGURE 11 Version-control structures

Versioning of single top-level structures is a necessary, but not sufficient requirement for a repository
that must provide coherence, traceability, indelibility, rollback, and support for forensic examination
of past states of the data. Features supporting “change control” are also required. Under a disciplined
change control scheme, changes are not made arbitrarily to single top-level structures, but to the
repository itself. Changes take the form of change-sets, called “contributions”, that consist of new or
changed versions of the controlled items in the repository. The key feature of a change-set is that it
acts like a transaction, and takes the repository from one consistent state to another, whereas arbitrary
combinations of changes to single controlled items coould easily be inconsistent, and even danger-
ously wrong where clinical data are concerned.

These concepts are well-known in configuration management (CM), and are used as the basis for
most software and other change management systems, including numerous free and commercial
products available today. They are a central design feature of openEHR architecture. The following
sections provide more details

7.2 The Configuration Management Paradigm

The “configuration management” (CM) paradigm is well-known in software engineering, and has its
own IEEE standard!. CM is about managed control of changes to a repository of items (formally
called “configuration items” or Cls), and is relevant to any logical repository of distinct information
items which changes in time. In health information systems, at least two types of information require
such management: electronic health records, and demographic information. In most analyses in the
past, the need for change management has been expressed in terms of specific requirements for audit
trailing of changes, availability of previous states of the repository and so on. In openEHR, the aim is

1. IEEE 828-2005 - standard for Software Configuration Management Plans.

Date of Issue: 06 Mar 2006 Page 24 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Versioning
Rev 1.0.2

to provide a formal, general-purpose model for change control, and show how it applies to health
information.

7.21 Organisation of the Repository
The general organisation of a repository of complex information items such as a software repository,
or the EHR consists of the following:
a number of distinct information items, or configuration items, each of which is uniquely
identified, and may have any amount of internal complexity;
optionally, a directory system of some kind, in which the configurations items are organised;
other environmental information which may be relevant to correctly interpreting the primary
versioned items, e.g. versions of tools used to create them.

In a software or document repository, the CIs are files arranged in the directories of the file system; in
an EHR based on openEHR, they are Compositions, the optoinal Folder structure, Parties in the
demographic service and so on. Contributions are made to the repository by users. This general
abstraction is visualised in FIGURE 12.

Direc(ry \

Strugjure _F Configuration
ltem

F

co tribu\t];ans

Users

Users

ol

_Repository Y,
FIGURE 12 General Structure of a Controlled Repository

7.2.2 Change Management
Change doesn’t occur to Cls in isolation, but to the repository as a whole. Possible types of change
include:

creation of a new CI;

removal of a CI;

modification of a CI;

creation of, change to or deletion of part of the directory structure;

moving of a CI to another location in the directory structure.

The goal of configuration management is to ensure the following:

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 25 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Versioning Architecture Overview
Rev 1.0.2

the repository is always in a valid state;
any previous state of the repository can be reconstructed;
all changes are audit-trailed.

7.3 Managing Change in Time

Properly managing changes to the repository requires two mechanisms. The first, version control, is
used to manage versions of each CI, and of the directory structure if there is one. The second is the
concept of the “change-set”, known as a contribution in openEHR. This is the set of changes to indi-
vidual CIs (and the directory structure) made by a user as part of some logical change. For example,
in a document repository, the logical change might be an update to a document that consists of multi-
ple files (CIs). There is one contribution, consisting of changes to the document file ClIs, to the repos-
itory. In the EHR, a contribution might consist of changes to more than one Composition, and
possibly to the organising Folder structure.

A typical sequence of changes to a repository is illustrated below. FIGURE 13 shows a the effect of
four Contributions (indicated by blue ovals on the left hand side) to a repository containing a number
of ClIs (that the directory tree is not shown for the sake of simplicity). As each Contribution is made,
the repository is changed in some way. The first brings into existing a new CI, and modifies three oth-
ers (changes indicated by the ‘C’ triangles). The second contribution causes the creation of a new CI
only. The third causes a creation as well as two changes, while the fourth causes only a change.
(Changes to the folder structure are not shown here).

existing Cls—
Cl creation

Contribution)_ __
1

Contribution) - — | — _ |
2

Contribution - — | _— _— L _ | | | — & _ _ _C\N _ _ | _ _ _
3

Contribution) _ __
4

FIGURE 13 Contributions to the Repository (delta form)

One nuance which should be pointed out is that in FIGURE 13, contributions are shown as if they are
literally a set of deltas, i.e. exactly the changes which occur to the record. Thus, the first contribution
is the set {CI,,, C,1, C.1, C41} and so on. Whether this is literally true depends on the construction of
applications. In some situations, some CIs may be updated by the user viewing the current list and
entering just the changes - the situation shown in FIGURE 13; in others, the system may provide the
current state of these Cls for editing by the user, and submit the updated versions, as shown in FIG-

Date of Issue: 06 Mar 2006 Page 26 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Versioning
Rev 1.0.2

URE 14. Some applications may do both, depending on which CI is being updated. The internal ver-
sioning implementation may or may not generate deltas as a way of efficient storage.

Contribution, | ~ L _ _ _ _ _ _ _ 1 A~y | _ - _ _ _ 1 _ _
1

Contribution_. _ | _ __
2

Contribution- — | — — — . _ __ — 4 — - Ch L — —p— — —
3

Contribution) _
4

FIGURE 14 Contributions to the Repository (non-delta form)

For the purposes of openEHR, a contribution is considered as being the logical set of ClIs changed or
created at one time, as implied by FIGURE 14.

7.3.1 General Model of a Change-controlled Repository

FIGURE 15 shows an abstract model of a change-controlled repository, which consists of:

version-controlled configuration items - instances of VERSIONED OBJECT<T>;
CONTRIBUTIONS;

an optional directory system of of folders. If folders are used, the folder structure must also
be versioned as a unit.

The actual type of links between the controlled repository and the other entities might vary - in some
cases it might be association, in others aggregation; cardinalities might also vary. FIGURE 15 there-
fore provides a guide to the definition of actual controlled repositories, such as an EHR, rather than a
formal specification for them.

11_Cls
- — — — — — 2 "JVERSIONED_OBJECT<T> | - 4T |

| ' */r Cls
| directory,
| T —VERSIONED_FOLDER}|- —|{FOLDER

0.1
CONTROLLED_ | | T]

— . —
contributions

FIGURE 15 Abstract Model of Change-controlled Repository

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 27 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR .org web: http://www.openEHR.org

Identification Architecture Overview
Rev 1.0.2

8 Identification

8.1 General Scheme

The identification scheme described here requires two kinds of “identifier”: identifiers proper and ref-
erences, or locators. An identifier is a unique (within some context) symbol or number given to an
object, and usually written into the object, whereas a reference is the use of an identifier by an exte-
rior object, to refer to the object containing the identifier in question. This distinction is the same as
that between primary and foreign keys in a relational database system.

In the openEHR RM, identifiers and references are implemented with two groups of classes defined
in the support.identification package. Identifiers of various kinds are defined by descendant
classes of OBJECT ID, while references are defined by the classes inheriting from OBJECT REF. The
distinction is illustrated in FIGURE 16. Here we see two container objects with OBJECT IDs (since
OBJECT ID is an abstract type, the actual type will be another xxx ID class), and various

OBJECT_ REF's as references.

OBJECT_ID =2
- ~|OBJECT_REF =5
OBJECT_REF=7

OBJECT ID=5

A
|
\
\

|
I
|
v

OBJECT_REF =2

FIGURE 16 XXX_IDs and XXX_REFs

8.2 Levels of Identification

In order to make data items locatable from the outside, identification is supported at 3 levels in
openEHR, as follows:

repository objects: entities such as the EHR (EHR IM) and VERSIONED OBJECTs (Com-
mon IM) are identified uniquely;

top-level content structures: versioned content structures such as COMPOSITION,
EHR STATUS, PARTY etc are uniquely identified by the association of the identifier of their
containing VERSIONED OBJECT and the identifier of their containing VERSION within the
container;

internal nodes: nodes within top-level structures are identified using paths.

Three kinds of identification are used respectively. For repository structures, meaningless unique
identifiers (“uids”) are used. In most cases, the type HIER_OBJECT_ID will be used, which contains
an instance of a subtype of the UID class, i.e. either an ISO OID or a IETF UUID (see
http://www.ietf.org/rfc/rfc4122.txt; also known as a GUID). In general UUIDs are favoured
since they require no central assignment and can be generated on the spot. A repository object can be
referenced with an OBJECT REF containing its identifier.

Versions of top-level structures are identified in a way that is guaranteed to work even in distributed
environments where copying, merging and subsequent modification occur. The full identification of a
version of a top-level structure is the globally unique tuple consisting of the uid of the owning

Date of Issue: 06 Mar 2006 Page 28 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.ietf.org/rfc/rfc4122.txt

Architecture Overview Identification
Rev 1.0.2

VERSIONED OBJECT, and the two VERSION attributes version_tree_id and creating system_id. The
version_tree id is a 1 or 3-part number string, such as “1” or for a branch, “1.2.1”7. The
creating system_id attribute carries a unique identifier for the system where the content was first cre-
ated; this may be a GUID, Oid or reverse internet identifier. A typical version identification tuple is as
follows:

F7C5C7B7-75DB-4b39-9A1E-COBA9BFDBDEC -- 1id of VERSIONED COMPOSITION
au.gov.health.rdh.ehrl -- 1d of creating system
2 -- current version

This 3-part tuple is known as a “Version locator” and is defined by the class OBJECT VERSION ID
in the support.identification package. A VERSION can be referred to using a normal
OBJECT REF that contains a copy of the version’s OBJECT VERSION ID. The openEHR version
identification scheme is described in detail in the change control package section of the Common
IM.

The last component of identification is the path, used to refer to an interior node of a top-level struc-
ture identified by its Version locator. Paths in openEHR follow an Xpath style syntax, with slight
abbreviations to shorten paths in the most common cases. Paths are described in detail below.

To refer to an interior data node from outside a top-level structure, a combination of a Version locator
and a path is required. This is formalised in the LOCATABLE REF class in the change control
package section of the Common IM. A Universal Resource Identifier (URI) form can also be used,
defined by the data type Dv_EHR URI (Data types IM). This type provides a single string expression
in the scheme-space “ehr://” which can be used to refer to an interior data node from anywhere (it can
also be used to represent queries; see below). Any LOCATABLE REF can be converted to a
DV_EHR URI, although not all DV_. EHR URIs are LOCATABLE REFs.

FIGURE 17 summarises how various types of OBJECT ID and OBJECT REF are used to identify
objects, and to reference them from the outside, respectively.

uid: HIER_OBJECT_ID

OBJECT_REF id: VERSION_OBJECT _ID

LOCATABLE REE VER
VERSION<X>

VERSIONED_OBJECT<X>

FIGURE 17 How to reference various levels of object

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 29 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR .org web: http://www.openEHR.org

Archetyping Architecture Overview
Rev 1.0.2

9 Archetyping

9.1 Overview

Under the two-level modelling approach, the formal definition of information structuring occurs at
two levels. The lower level is that of the reference model, a stable object model from which software
and data can be built. Concepts in the openEHR reference model are invariant, and include things like
Composition, Section, Observation, and various data types such as Quantity and Coded text. The
upper level consists of domain-level definitions in the form of archetypes and templates. Concepts
defined at this level include things such as “blood pressure measurement”, “SOAP headings”, and
“HbAlc Result”.

Archetypes are themselves instances of an archetype model, which defines a language in which to
write archetypes. Archetypes are general-purpose, re-usable, and composable. They are used at runt-
ime by building templates from them. A template is a tree of archetypes each of which constrains
instances of various types in the reference model, i.e. Compositions, Section hierarchies, Entries and
so on. Thus, while there are likely to be archetypes for such things as “biochemistry results” (an Entry
archetype) and “SOAP headings” (a Section archetype), templates are used to put archetypes together

to form whole Compositions in the EHR, e.g. for “discharge summary”, “antenatal exam” and so on.
Templates correspond closely to screen forms and printed reports.

A template is used at runtime to create default data structures and to validate data input, ensuring that
all data in the EHR conform to the constraints defined in the archetypes comprising the template. In
particular, it conforms to the path structure of the archetypes, as well as their terminological con-
straints. Which archetypes were used at data creation time is written into the data, in the form of both
archetype identifiers at the relevant root nodes, and archetype node identifiers - normative node
names, which are the basis for paths. When it comes time to modify or query data, these archetype
data enable applications to retrieve and use the original archetypes, ensuring modifications respect the
original constraints, and allowing queries to be intelligently constructed.

All information conforming to the openEHR Reference Model (RM) - i.e. the collection of Informa-
tion Models (IMs) - is “archetypable”, meaning that the creation and modification of the content, and
subsequent querying of data is controllable by archetypes. Archetypes are themselves separate from
the data, and are stored in their own repository. The archetype repository at any particular location
will usually include archetypes from well-known online archetype libraries. Archetypes are deployed
at runtime via templates that specify particular groups of archetypes to use for a particular purpose,
often corresponding to a screen form.

9.2 Scope of Archetypes and Templates

All nodes within the top-level information structures in the openEHR RM are “archetypable”, with
certain nodes within those structures being archetype “root points”. Each top-level type is always
guaranteed to be an archetype root point. Although it is theoretically possible to use a single arche-
type for an entire top-level structure, in most cases, particularly for COMPOSITION and PARTY, a hier-
archical structure of multiple archetypes will be used. This allows for componentisation and
reusability of archetypes. When hierarchies of archetypes are used for a top-level structure, there will
also be archetype root points in the interior of the structure. For example, within a COMPOSITION,
ENTRY instances (i.e. OBSERVATIONs, EVALUATIONs etc) are almost always root points. SECTION
instances are root points if they are the top instance in a Section structure; similarly for FOLDER
instances within a directory structure. Other nodes (e.g. interior SECTIONs, ITEM STRUCTURE

Date of Issue: 06 Mar 2006 Page 30 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Archetyping
Rev 1.0.2

instances) might also be archetype root points, depending on how archetypes are applied at runtime to
data. FIGURE 18 illustrates the application of archetypes and templates to data.

| e |
IExtentofI ey
archetype | Composition* |
I— — — — —I I_ [_I
r—=--=-=-=-\=-=-=-=- = 1
Extent of | Section* |
template | |
* = root node | Section Section |
L TR — — — — — = -
r— - — = 1 - = 0~ s = = :R— — — — 1
| Observation* | | Evaluation* || Instruction* |
l / F\:_—J'Il / \ I ‘ |
| 'History | Table* | | History List [l Activity |
F— 1 N I | |
I List* | List* | Cluster || Single Single [List [
2N VAR T N A | |
| Element | Element | |[Element || Element Element Element || Element |
L — — L — — JdL — — dL — — —m —m —m — — — TS |

FIGURE 18 How Archetypes apply to Data

9.3 Archetype-enabling of Data

Archetype-enabling is achieved via inheritance into all concrete types in the RM of the class LOCAT-
ABLE from the package common.archetyped (see Common IM). The LOCATABLE class includes
the attributes archetype node id and archetype details. In the data, the former carries an identifier
from the archetype. If the node in the data is a root point, it carries the multipart identifier of the gen-
erating archetype, and archetype_details carries an ARCHETYPED object, containing information per-
tinent to archetype root points. If it is a non-root node, the archetype node id attibute carries the
identifier (known as an “at”, or “archetype term” code) of the archetype interior node that generated
the data node, and the archetype_details attribute is void.

Sibling nodes in data can carry the same archetype node_id in some cases, since archetypes provide a
pattern for data, rather than an exact template. In other words, depending on the archetype design, a
single archetype node may be replicated in the data.

In this way, each archetyped data composition1 in openEHR data has a generating archetype which
defines the particular configuration of instances to create the desired composition. An archetype for
“biochemistry results” is an OBSERVATION archetype, and constrains the particular arrangement of
instances beneath an OBSERVATION object; a “problem/SOAP headings” archetype constrains SEC-
TION objects forming a SOAP headings structure. In general, an archetyped data composition is any
composition of data starting at a root node and continuing to its leaf nodes, at which point lower-level
compositions, if they exist, begin. Each of the archetyped areas and its subordinate archetyped areas
in FIGURE 18 is an archetyped data composition.

1. Note: care must be taken not to confuse the general term “composition” with the specific use of this word in
openEHR and CEN EN 13606, defined by the COMPOSITTION class; the specific use is always indicated by
using the term “Composition”.

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 31 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Archetyping Architecture Overview
Rev 1.0.2

The result of the use of archetypes to create data in the EHR (and other systems) is that the structure
of data in any particular top-level object conforms to the constraints defined in a particular composi-
tion of archetypes chosen by a template, including all optionality, value, and terminology constraints.

9.4 Archetypes, Templates and Paths

The use of archetypes and templates enables paths to be used ubiquitously in the openEHR architec-
ture. Archetypes and templates have their own paths, constructed from attribute names and archetype
node identifiers, in an Xpath-compatible syntax. Thes paths serve to identify any node in a template
or archetype, such as the “diastolic blood pressure” ELEMENT node, deep within a “blood pressure
measurement” archetype. Since archetype node identifiers are embedded into data at runtime, arche-
type paths can be used to extract data nodes conforming to particular parts of archetypes, providing a
very powerful basis for querying. “Runtime” paths can also be constructed in data, consisting of more
complex predicates (still in the Xpath style). Paths in openEHR are explained in details under Paths
and Locators on page 34.

Date of Issue: 06 Mar 2006 Page 32 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Paths and Locators
Rev 1.0.2

10 Paths and Locators

10.1 Overview

The openEHR architecture includes a path mechanism that enables any node within a top level struc-
ture to be specified from the top of the structure. The combination of a path and a Version identifier
such as OBJECT VERSION ID forms a “globally qualified node reference” which can be expressed
using LOCATABLE_REF. It can also be expressed in portable URI form as a DV EHR URI, known as a
“globally qualified node locator”. Either representation enables any openEHR data node to be
referred to from anywhere. This section describes the syntax and semantics of paths, and of the URI
form of reference.

10.2 Paths

10.2.1 Basic Syntax

Paths in openEHR are defined in an Xpathl—comptabile syntax which is a superset of the path syntax
described in the Archetype Definition Language (ADL). The syntax is designed to be easily mappable
to Xpath expressions, for use with openEHR-based XML.

The runtime path syntax used in locator expressions follows the general pattern of a path consisting of
segments each consisting of an attribute name?, and separated by the slash (°/”) character, i.e.:

attribute name / attribute name / ... / attribute name
Paths select the object which is the value of the final attribute name in the path, when going from
some starting point in the tree and following attribute names given in the path. The starting point is
indicated by the initial part of the path, and can be specified in three ways:

relative path: path starts with an attribute name, and the starting point is the current point in the
tree (given by some previous operation or knowledge);

absolute path: path starts with a °/’; the starting point is the top of the structure;

movable path: path starts with a movable path leader °//> and is taken to be a pattern which can
start anywhere in the data; the pattern is matched if an actual path can be found anywhere in
the structure that matches the path given after the ‘//° leader.

10.2.2 Predicate Expressions

Paths specified solely with attribute names are limited in two ways. Firstly, they can only locate
objects in structures in where there are no containers, such as lists or sets. However, in any realistic
data, including most openEHR data, list, set and hash structures are common. Additional syntax is
needed to match a particular object from among the siblings referred to by a container attribute. This
takes the form of a predicate expression enclosed in brackets (‘[]’) after the relevant attribute in a seg-
ment, i.e.:

attribute name [predicate expression]
The general form of a path then resembles the following:

1. See W3C Xpath 1.0 specification, 1999. Availableat http://www.w3.0rg/TR/xpath.

2. In all openEHR documentation, the term “attribute” is used in the object-oriented sense of “property of an
object”, not in the XML sense of named values appearing within a tag. The syntax described here should not be
considered to necessarily have a literal mapping to XML instance, but rather to have a logical mapping to object-
oriented data structures.

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 33 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR .org web: http://www.openEHR.org

http://www.w3.org/TR/xpath

Paths and Locators Architecture Overview
Rev 1.0.2

attribute name / attribute name [predicate expression] /
Here, predicate expressions are used optionally on those attributes defined in the reference model to
be of a container type (i.e. having a cardinality of > 1). If a predicate expression is not used on a con-
tainer attribute, the whole container is selected.

The second limitation of basic paths is that they cannot locate objects based on other conditions, such
as the object having a child node with a particular value. To address this, predicate expressions can
also be used to select an object on the basis of other conditions relative to the object, by including
boolean expressions including paths, operators, values and parentheses.

The syntax of predicate expressions used in openEHR is a subset of the Xpath syntax for predicates
with a small number of shortcuts. The general form of a predicate statement is a boolean-returning
expression consisting of paths, values, operators and parentheses. In the current release of openEHR,
it is expected that only very simple expressions will be used. The simplest such expression is to iden-
tify an object by its archetype node_id value, which will be an ‘at’ code from an archetype; in other
words, just to use the ADL archetype path against the runtime data. A typical ADL path is the follow-
ing (applied to an Observation instance):

/data/events[at0003] /data/items[at0025] /value/magnitude

This path refers to the magnitude of a 1-minute Apgar total in an Observation containing a full Apgar
result structure. In this path, the [atNNNN] predicates correspond to [@archetype node id =
“atNNNN”] in standard Xpath, however, the shorthand form is used in openEHR as it is the only kind
of predicate used in archetype paths. In openEHR runtime paths, archetype code predicates are also
commonly used, and the same shortcut is allowed. However, runtime path predicates can also include
other expressions (including the orthodox Xpath equivalent expression for the archetype node id
shortcut), typically based on the value of some other attribute such as ELEMENT.name or EVENT.time.
Combinations of the archetype node _id and other such values are likely to be commonly used in que-
rying, such as the following path fragment (applied to an OBSERVATION instance):

/data/events[at0007 AND time >= “24-06-2005 09:30:00"]
This path would choose Events in Observation.data whose archetype node id meaning is “summary
event” (at0007 in some archetype) and which occurred at or after the given time. The following
example would choose an Evaluation containing a diagnosis (at0002.1) of “other bacterial intestinal
infections” (ICD10 code A04):

/data/items[at0002.1
AND value/defining code/terminology id/value = “ICD10AM”
AND value/defining code/code string = “A04"]

10.2.3 Paths within Top-level Structures

Paths within top-level structures strictly adhere to attribute and function names in the relevant parts of
the reference model. Predicate expressions are needed to distinguish multiple siblings in various
points in paths into these structures, but particularly at archetype “chaining” points. A chaining point
is where one archetype takes over from another as illustrated in FIGURE 18. Chaining points in Com-
positions occur between the Composition and a Section structure, potentially between a Section struc-
ture and other sub-Section structures (constrained by a different Section archetype), and between
either Compositions or Section structures, and Entries. Chaining might also occur inside an Entry, if
archetyping is used on lower level structures such as Item_lists etc. Most chaining points correspond
to container types such as List<T> etc, e.g. COMPOSITION.content is defined to be a
List<CONTENT ITEM>, meaning that in real data, the content of a Composition could be a List of
Section structures. To distinguish between such sibling structures, predicate expressions are used,
based on the archetype_id. At the root point of an archetype in data (e.g. top of a Section structure),

Date of Issue: 06 Mar 2006 Page 34 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Paths and Locators
Rev 1.0.2

the archetype_id carries the identifier of the archetype used to create that structure, in the same man-
ner as any interior point in an archetyped structure has an archetype node_id attribute carrying arche-
type node_id values. The chaining point between Sections and Entries works in the same manner, and
since multiple Entries can occur under a single Section, archetype_id predicates are also used to dis-
tinguish them. The same shorthand is used for archetype id predicate expressions as for
archetype _node_ids, i.e. instead of using [@archetype id = “xxxxx”], [xxxx] can be used
instead.

The following paths are examples of referring to items within a Composition:

/content[openEHR—EHR—SECTION.vital_signs.vl]/
items[openEHR—EHR—OBSERVATION.heart_rate—pulse.vl]/data/
items[at0003 AND time='2006-01-25T08:42:20']/data/items[at0004]

/content[openEHR—EHR—SECTION.vital_signs.vl]/
items[openEHR—EHR—OBSERVATION.blood_pressure.vl]/data/
items[at0006 AND time='2006-01-25T08:42:20']/data/items[at0004]

/content[openEHR—EHR—SECTION.vital_signs.vl]/
items[openEHR—EHR—OBSERVATION.blood_pressure.vl]/data/
items[at0006 AND time='2006-01-25T08:42:20']/data/items[at0005]

Paths within the other top level types follow the same general approach, i.e. are created by following
the required attributes down the hierarchy.

10.2.4 Runtime Paths and Uniqueness

Archetype paths are not guaranteed to be unique in data. However it will sometimes be necessary to
be able to construct a unique path to any data item in real data. This can only be reliably done by
using attributes other than archetype node_id. Consider as an example the following OBSERVATION
archetype:

[at0000] matches { -- blood pressure measurement
matches {
matches {
{1..*} matches {

[at0001] {0..1} matches { -- any event
matches {...}
matches {
matches { -- systemic arterial BP

matches {2..*}
matches {
[at1100] matches {-- systolic BP
matches {...}
matches { matches {...}}

[at1200] matches {-- diastolic BP
matches {...}
matches { matches {...}}

The following archetype path refers to the systolic blood pressure magnitude:

/data/events[at0001]/data/items[at1100]/value/magnitude

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 35 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Paths and Locators Architecture Overview
Rev 1.0.2

The codes [atnnnn] at each node of the archetype become the archetype node ids found in each
node in the data.

Now consider an OBSERVATION instance (expressed here in dADL format), in which a history of two
blood pressures has been recorded using this archetype:

< -- blood pressure measurement
archetype node id = <[openEHR-EHR-OBSERVATION.bp meas.v2]>
name = <“xxx”>
data = < -—- HISTORY
events = < -- List <EVENT>
1] =< -- EVENT
archetype node id = <[at0001]>
name = <“sitting”>
data = < -- ITEM LIST
items = < -- List<ELEMENT>
[“systolic”] = <
archetype node id = <[atl1100]>
value = <magnitude = <120.0> ...>
>
[“diastolic”] = <....
archetype node id = <[atl1200]>
value = <magnitude = <80.0> ...>
>
>
>
>
[2] = < -—- EVENT
archetype node id = <[at0001]>
name = <“standing”>
data = < -- ITEM LIST
items = < -- List<ELEMENT>
[“systolic”] = <
archetype node id = <[atl100]>
value = <magnitude = <105.0> ...>
>
[“diastolic”] = <....
archetype node id = <[atl1200]>
value = <magnitude = <70.0> ...>
>
>
>
>
>
>

The archetype path mentioned above matches both systolic pressures in the recording. In many query-
ing situations, this may be exactly what is desired. However, to uniquely match each of the systolic
pressure nodes, paths need to be created that are based not only on the archetype node id but also on
another attribute. In the case above, the name attribute provides uniqueness. Unique paths to the :

/data/events[at0001 AND name=“sitting”]/data/items[atl1100]/value/magnitude

/data/events[at0001 AND name=“standing”]/data/items[atl1100]/value/magnitude
As a general rule, one or more other attribute values in the runtime data will uniquely identify any
node in openEHR data. To make construction of unique paths easier, the value of the name attribute
(inherited from the LOCATABLE class), is required to be unique with respect to the name values of sib-
ling nodes. This has two consequences as follows:

Date of Issue: 06 Mar 2006 Page 36 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Paths and Locators
Rev 1.0.2

a guaranteed unique path can always be constructed to any data item in openEHR data using
a combination of archetype node id and name values (as shown in the example paths
above);

the name value may be systematically defined to be a copy of one or more other attribute
values. For example, in an EVENT object, name could clearly be a string copy of the time
attribute.

10.3 EHR URIs

To create a reference to a node in an EHR in the form of a URI (uniform resource identifier), two ele-
ments are needed: the path within a top-level structure, and a reference fo a top-level structure. These
are combined to form a URI in an “ehr” scheme-space, obeying the following syntax:

ehr://top level structure locator/path inside top level structure
Under this scheme, any object in any openEHR EHR is addressable via a URI. The openEHR data
type DV_EHR URI is designed to carry URIs of this form, enabling URIs to be constructed for use
within LINKs and elsewhere in the openEHR EHR. (URIs of course are only one method of address-
ing or querying data in the EHR. Other querying syntaxes and functional interfaces will be developed
and used over time.)

10.3.1 Locating Top-Level Structures

The first part of an EHR URI needs to identify a top-level structure. As described above, a Version
locator can be used to do this. However, this is not the only way: various logical queries can also be
used, e.g. “get the latest version from a given Versioned object matching...”. For reasons of efficiency,
the top-level structure locator part of the URI is also likely to include the EHR id, and possibly the
EHR system id, even though neither of these are strictly needed for identification. Thus, the first part
of an EHR URI might include the following:

EHR id;
EHR system id, depending on whether the EHR id is globally unique or not;
Either:
- version time, i.e. time baseline for retrieving versions, defaults to “now”;
- identifier of particular Version container object, typically its uid;
Or:
- a Version identifier, i.e. {Version container object Uid; version tree id,
creating system_id}

For a number of reasons there is currently no standard syntax for encapsulating these parameters.
Firstly, there is an issue to do with how EHRs will be identified in openEHR systems. Identifiers may
be required to conform to local health jurisdiction requirements, or may not. If EHR identifiers are
globally unique, or even nationally unique, then in theory the EHR system identifier can be dispensed
with. However in a practical sense the identifier of the EHR system can only be dispensed with if
there is a health information location service operating in the environment that can perform EHR id -
> EHR system id mappings, in much the same way as the internet DNS converts logical domain
names to [P addresses.

Another issue is whether it can be assumed that the version time baseline has already been established
in some earlier call or service invocation, and that no version time information is needed.

Various syntax possibilities include:

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 37 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR .org web: http://www.openEHR.org

Paths and Locators Architecture Overview
Rev 1.0.2

an Xpath-style syntax; this does not seem desirable as it implies hierarchical data contain-
ment structures that don’t exist and is likely to be confused with the path part of the URI,;

a web-services inspired functional syntax;
a database-inspired query syntax.

Currently, a fairly typical URI query style of syntax is used, as shown in the following examples.

This path matches a VERSIONED COMPOSITION:

ehr://rdh.health.gov.au?ehr=1234567&versioned composition=87284370-2D4B-
4e3d-A3F3-F303D2F4F34B

The following path matches the most recent VERSION<COMPOSITION> from a specified
VERSTIONED COMPOSITION:

ehr://rdh.health.gov.au?ehr=1234567&versioned composition=0892BF98-910D-
4df9-BF7E-F10D72C1C81A&latest version

The following path matches a COMPOSITION within VERSION 2 of a
VERSIONED COMPOSITION:

ehr://rdh.health.gov.au?ehr=1234567&version={F7C5C7B7-75DB~-
4b39-9A1E-COBA9BFDBDEC: : rdh.health.gov.au::2}&data

In these paths, the following pseudo-identifiers are used:
versioned composition: to indicate an instance of VERSIONED COMPOSITION;

version tree id: the version identifier of the VERSION within the tree structure of the
owning VERSIONED OBJECT;

latest version: a pseudo-identifier used to indicate a VERSION instance being the result
of the call VERSIONED COMPOSITION./atest version;

Implementors and users of the current release of openEHR are encouraged to experiment and/or pro-
pose improved solutions to the locator requirement described in this section.

Date of Issue: 06 Mar 2006 Page 38 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Relationship to Standards
Rev 1.0.2

1 Relationship to Standards

The openEHR specifications make use of available standards where relevant, and as far as possible in
a compatible way. However, for the many standards have never been validated in their published form
(i.e. the form published is not tested in implementations, and may contain errors), openEHR makes
adjustments so as to ensure quality and coherence of the openEHR models. In general, “using” a
standard in openEHR may mean defining a set of classes which map it into the openEHR type system,
or wrap it or express it in some other compatible way, allowing developers to build completely coher-
ent openEHR systems, while retaining compliance or compatibility with standards. The standards rel-
evant to openEHR fall into a number of categories as follows.

Standards by which openEHR can be evaluated

These standards define high-level requirements or compliance criteria which can be used to provide a
means of normative comparison of openEHR with other related specifications or systems. The fol-
lowing ones have been used for this purpose so far:

ISO TC 251 TS 18308 - Technical Specification for Requirements for an EHR Architecture.

Standards which have influenced the design of openEHR specifications
The following standards have influenced the design of the openEHR specifications:
OMG HDTF Standards - general design
CEN EN 13606:2006: Electronic Health Record Communication
CEN HISA 12967-3: Health Informatics Service Architecture - Computational viewpoint

Standards which have influenced the design of openEHR archetypes
The following standards are mainly domain-level models of clinical practice or concepts, and are
being used to design openEHR archetypes and templates.
CEN HISA 12967-2: Health Informatics Service Architecture - Information viewpoint
CEN ENYV 13940: Continuity of Care.

Standards which are used “inside” openEHR
The following standards are used or referenced at a fine-grained level in openEHR:
ISO 8601: Syntax for expressing dates and times (used in openEHR Quantity package)

ISO 11404: General Purpose Datatypes (mapped to in openEHR assumed types package
in Support Information Model)

HL7 UCUM: Unified Coding for Units of Measure (used by openEHR Data types)
HL7v3 GTS: General Timing Specification syntax (used by openEHR Data types).
some HL7v3 domain vocabularies are mapped to from the openEHR terminology.

Standards which require a conversion gateway
The following standards are in use and require data conversion for use with openEHR:

CEN EN 13606:2005: Electronic Health Record Communication - near-direct conversion
possible, as openEHR and CEN EN 13606 are actively maintained to be compatible.

HL7v3 CDA: Clinical Document Architecture (CDA) release 2.0 - fairly close conversion
may be possible.

HL7v3 messages. Quality of conversion currently unknown due to flux in HL7v3 messag-
ing specifications.

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 39 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR .org web: http://www.openEHR.org

Relationship to Standards Architecture Overview
Rev 1.0.2

HL7v2 messages. Experience in Australia indicates that importing of HL7v2 message
information is relatively easy. Export from openEHR may also be possible.

Generic Technology Standards
The following standards are used or referenced in openEHR:
ISO RM/ODP
OMG UML 2.0
W3C XML schema 1.0
W3C Xpath 1.0

Date of Issue: 06 Mar 2006 Page 40 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview Implementation Technology Specifications
Rev 1.0.2

12 Implementation Technology Specifications

12.1 Overview

ITSs are created by the application of transformation rules from the “full-strength” semantics of the
abstract models to equivalents in a particular technology. Transformation rules usually include map-
pings of:

names of classes and attributes;

property and function signature mapping;

mapping of basic types e.g. strings, numerics;

how to handle multiple inheritance;

how to handle generic (template) types;

how to handle covariant and contravariant redefinition semantics;

the choice of mapping properties with signature xxxx:7 (i.e. properties with no arguments)
to stored attributes (xxxx.:7) or functions (xxxx():7);

how to express preconditions, postconditions and class invariants;
mappings between assumed types such as List<>, Set<> and inbuilt types.

ITSs are being developed for a number of major implementation technologies, as summarised below.
Implementors should always look for an ITS for the technology in question before proceeding. If
none exists, it will need to be defined. A methodology to do this is being developed.

FIGURE 19 illustrates the implementation technology specification space. Each specification docu-
ments the mapping from the standard object-oriented semantics used in the openEHR abstract mod-
els, and also provides an expression of each of the abstract models in the ITS formalism.

\

' Serialisation / Data

\ Formalisms e
Y = e
Eiffel |gava \ schema -~ RDBMS
| e std
Programming abstract ™\ OBL
Languages models
C# > : Database
"\ Qracle Schemas
Python delphi // CORBA \\\
,/ IDL . Postgresql
o .NET .
./ Distribution
/ Formalisms "

FIGURE 19 Implementation Technologies

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 41 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Implementation Technology Specifications Architecture Overview
Rev 1.0.2

Date of Issue: 06 Mar 2006 Page 42 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview References

A

Rev 1.0.2

References

1 Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems.
See http://www.deepthought.com.au/it/archetypes.html.

2 Beale T. Archetypes: Constraint-based Domain Models for Future-proof Information Systems.
OOPSLA 2002 workshop on behavioural semantics. Available at http://www.deep-
thought.com.au/XXX.

3 Beale T et al. Design Principles for the EHR. See http://www.openEHR.org/DP.html.

4 ISO:IEC: Information Technology. Open Distributed Processing, Reference Model: Part
2:Foundations.

5 Maier M. Architecting Principles for Systems-of-Systems. Technical Report, University of Al-
abama in Huntsville. 2000. Available at http://www.infoed.com/Open/PAPERS/systems.htm

6 Rector A L, Nowlan W A, Kay S. Foundations for an Electronic Medical Record. The IMIA
Yearbook of Medical Informatics 1992 (Eds. van Bemmel J, McRay A). Stuttgart Schattauer
1994.

7 Schloeffel P. (Editor). Requirements for an Electronic Health Record Reference Architecture.
International Standards Organisation, Australia; Feb 2002; ISO TC 215/SC N; ISO/WD 18308.

8 CORBAmed document: Person Identification Service. (March 1999). (Authors?)

9 CORBAmed document: Lexicon Query Service. (March 1999). (Authors?)

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 43 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.infoed.com/Open/PAPERS/systems.htm
http://www.deepthought.com.au/it/archetypes.html
http://www.deepthought.com.au/it/archetypes.html

References Architecture Overview
Rev 1.0.2

Date of Issue: 06 Mar 2006 Page 44 of 45 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Architecture Overview
Rev 1.0.2

END OF DOCUMENT

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 45 of 45 Date of Issue: 06 Mar 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

	Copyright Notice
	Amendment Record
	Acknowledgements
	1 Introduction
	1.1 Purpose
	1.2 Related Documents
	1.3 Status
	1.4 Peer review

	2 Overview
	2.1 The openEHR Specification Project

	3 Aims
	4 Design Principles
	4.1 Ontological Separation
	4.2 Separation of Responsibilities
	4.3 Separation of Viewpoints

	5 openEHR Package Structure
	5.1 Overview
	5.2 Reference Model (RM)
	5.2.1 Package Overview

	5.3 Archetype Model (AM)
	5.4 Service Model (SM)

	6 Scope of Architecture
	6.1 Correspondence to System Architectures
	6.2 Top-level Information Structures

	7 Versioning
	7.1 Overview
	7.2 The Configuration Management Paradigm
	7.2.1 Organisation of the Repository
	7.2.2 Change Management

	7.3 Managing Change in Time
	7.3.1 General Model of a Change-controlled Repository

	8 Identification
	8.1 General Scheme
	8.2 Levels of Identification

	9 Archetyping
	9.1 Overview
	9.2 Scope of Archetypes and Templates
	9.3 Archetype-enabling of Data
	9.4 Archetypes, Templates and Paths

	10 Paths and Locators
	10.1 Overview
	10.2 Paths
	10.2.1 Basic Syntax
	10.2.2 Predicate Expressions
	10.2.3 Paths within Top-level Structures
	10.2.4 Runtime Paths and Uniqueness

	10.3 EHR URIs
	10.3.1 Locating Top-Level Structures

	11 Relationship to Standards
	12 Implementation Technology Specifications
	12.1 Overview

	A References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

