
The openEHR Support Information Model
Rev 1.5

Editors:{T Beale, S Heard}

publ ic
REFERENCE MODEL

The openEHR Support Information Model

Editors:{T Beale, S Heard}1, {D Kalra, D Lloyd}2

Revision: 1.5

Pages: 43

1. Ocean Informatics Australia
2. Centre for Health Informatics and Multi-professional Educa-
tion, University College London

Release 1 .0 comment
, {D Kalra, D Lloyd} Page 1 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

© 2003-2006 The openEHR Foundation

The openEHR foundation
is an independent, non-profit community, facilitating the creation and sharing

of health records by consumers and clinicians via open-source, standards-
based implementations.

email: info@openEHR.org web: http://www.openEHR.org

Founding
Chairman

David Ingram, Professor of Health Informatics, CHIME, University
College London

Founding
Members

Dr P Schloeffel, Dr S Heard, Dr D Kalra, D Lloyd, T Beale

The openEHR Support Information Model
Rev 1.5
Copyright Notice

© Copyright openEHR Foundation 2001 - 2006
All Rights Reserved

1. This document is protected by copyright and/or database right throughout the
world and is owned by the openEHR Foundation.

2. You may read and print the document for private, non-commercial use.
3. You may use this document (in whole or in part) for the purposes of making

presentations and education, so long as such purposes are non-commercial and
are designed to comment on, further the goals of, or inform third parties
about, openEHR.

4. You must not alter, modify, add to or delete anything from the document you
use (except as is permitted in paragraphs 2 and 3 above).

5. You shall, in any use of this document, include an acknowledgement in the form:
"© Copyright openEHR Foundation 2001-2006. All rights reserved. www.openEHR.org"

6. This document is being provided as a service to the academic community and on
a non-commercial basis. Accordingly, to the fullest extent permitted under
applicable law, the openEHR Foundation accepts no liability and offers no
warranties in relation to the materials and documentation and their content.

7. If you wish to commercialise, license, sell, distribute, use or otherwise copy
the materials and documents on this site other than as provided for in
paragraphs 1 to 6 above, you must comply with the terms and conditions of the
openEHR Free Commercial Use Licence, or enter into a separate written agreement
with openEHR Foundation covering such activities. The terms and conditions of
the openEHR Free Commercial Use Licence can be found at
http://www.openehr.org/free_commercial_use.htm
Date of Issue: 06 Feb 2006 Page 2 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model
Rev 1.5
Amendment Record

Issue Details Raiser Completed

R E L E A S E 1.0

1.5 CR-000162. Allow party identifiers when no demographic data.
Relax invariant on PARTY_REF.
CR-000184. Separate out terminology from Support IM.
CR-000188: Add generating_type function to ANY for use in
invariants
CR-000161. Support distributed versioning. Move
OBJECT_ID.version to subtypes. Add OBJECT_VERSION_ID,
VERSION_TREE_ID and LOCATABLE_REF types.

S Heard
H Frankel
T Beale
T Beale

T Beale
H Frankel

06 Feb 2006

R E L E A S E 0.96

1.3 CR-000135: Minor corrections to rm.support.terminology package.
CR-000145: Add class for access to external environment.
CR-000137: Add definitions class to support.definition package.

D Lloyd
D Lloyd
D Lloyd

25 Jun 2005

R E L E A S E 0.95

1.2.1 CR-000129. Fix errors in UML & specs of Identification pack-
age. Adjust invariants & postcondition of OBJECT_ID,
HIER_OBJECT_ID, ARCHETYPE_ID and TERMINOLOGY_ID.
Improve text to do with assumed abstract types Any and
Ordered_numeric.

D Lloyd 25 Feb 2005

1.2 CR-000128. Update Support assumed types to ISO 11404:2003.
CR-000107. Add support for exclusion and inclusion of Interval
limits.
CR-000116. Add PARTICIPATION.function vocabulary and invari-
ant.
CR-000122. Fix UML in Terminology_access classes in Support
model.
CR-000118. Make package names lower case.
CR-000111. Move Identification Package to Support.
CR-000064. Re-evaluate COMPOSITION.is_persistent attribute.
Add “composition category” vocabulary. Re-ordered vocabular-
ies alphabetically.

T Beale
A Goodchild

T Beale

D Lloyd

T Beale
DSTC

D Kalra

10 Feb 2005

R E L E A S E 0.9

1.1 CR-000047. Improve handling of codes for structural attributes.
Populated Terminology and code_set codes.

S Heard 11 Mar 2004

1.0 CR-000091. Correct anomalies in use of CODE_PHRASE and
DV_CODED_TEXT. Add simple terminology service interface.
CR-000095. Remove property attribute from Quantity package.
Add simple measurement interface.
Formally validated using ISE Eiffel 5.4.

T Beale

DSTC,
S Heard

09 Mar 2004

0.9.9 CR-000063. ATTESTATION should have a status attribute. D Kalra 13 Feb 2004

0.9.8 CR-000068. Correct errors in INTERVAL class. T Beale 20 Dec 2003
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 3 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model
Rev 1.5
Acknowledgements
The work reported in this paper has been funded in by a number of organisations, including The Uni-
versity College, London and Ocean Informatics, Australia.

0.9.7 CR-000032. Basic numeric type assumptions need to be stated
CR-000041. Visually differentiate primitive types in openEHR
documents.
CR-000043. Move External package to Common RM and
rename to Identification (incorporates CR-000036 - Add
HIER_OBJECT_ID class, make OBJECT_ID class abstract.)

DSTC,
D Lloyd,
T Beale

09 Oct 2003

0.9.6 CR-000013. Rename key classes. Based on CEN ENV13606.
CR-000038. Remove archetype_originator from multi-axial
archetype id.
CR-000039. Change archetype_id section separator from ':' to '-'.

T Beale 18 Sep 2003

0.9.5 CR-000036. Add HIER_OBJECT_ID class, make OBJECT_ID class
abstract.

T Beale 16 Aug 2003

0.9.4 CR-000022. Code TERM_MAPPING.purpose. G Grieve 20 Jun 2003

0.9.3 CR-000007. Added forgotten terminologies for
Subject_relationships and Provider_functions.

T Beale 11 Apr 2003

0.9.2 Detailed review by Ocean, DSTC, Grahame Grieve. Updated
valid characters in OBJECT_ID.namespace.

G Grieve 25 Mar 2003

0.9.1 Added specification for BOOLEAN type. Corrected minor error
in ISO 639 standard strings - now conformant to
TERMINOLOGY_ID. OBJECT_ID.version_id now optional.
Improved document structure.

T Beale 18 Mar 2003

0.9 Initial Writing. Taken from Data types and Common Reference
Models. Formally validated using ISE Eiffel 5.2.

T Beale 25 Feb 2003

Issue Details Raiser Completed
Date of Issue: 06 Feb 2006 Page 4 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model
Rev 1.5
Table of Contents

1 Introduction .. 7
1.1 Purpose...7
1.2 Related Documents ..7
1.3 Status..7
1.4 Peer review ..7
1.5 Conformance..7

2 Support Package .. 9
2.1 Overview..9
2.2 Class Definitions..9
2.2.1 EXTERNAL_ENVIRONMENT_ACCESS Class9

3 Assumed Types ..11
3.1 Overview..11
3.2 Inbuilt Primitive Types ..12
3.2.1 Any Type..13
3.2.2 Boolean Type ...13
3.2.3 Ordered_numeric Type ..14
3.3 Assumed Library Types ...15
3.3.1 String Type...16
3.3.1.1 UNICODE ...16
3.3.2 Aggregate Type ..17
3.3.3 Hash Type ..17
3.4 Date/Time Types ..17
3.4.1 Interval Type ..18

4 Identification Package ... 19
4.1 Overview..19
4.1.1 Requirements ...19
4.1.2 Identifying Real World Entities (RWE)...21
4.1.3 Identifying Informational Entities (IEs) ..21
4.1.4 Identifying Versions of Informational Entities22
4.1.5 Referring to Informational Entities..22
4.2 Class Descriptions..22
4.2.1 OBJECT_REF Class..22
4.2.2 ACCESS_GROUP_REF Class..23
4.2.3 PARTY_REF Class ..23
4.2.4 LOCATABLE_REF Class ...24
4.2.5 OBJECT_ID Class ...24
4.2.6 HIER_OBJECT_ID Class..25
4.2.6.1 Identifier Syntax ..25
4.2.7 OBJECT_VERSION_ID Class..25
4.2.7.1 Identifier Syntax ..26
4.2.8 VERSION_TREE_ID Class ..26
4.2.9 ARCHETYPE_ID Class ..27
4.2.9.1 Archetype ID Syntax ...28
4.2.10 TERMINOLOGY_ID Class ..29
4.2.10.1 Identifier Syntax ..29
4.2.11 UID Class...30
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 5 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model
Rev 1.5
4.2.12 ISO_OID Class.. 30
4.2.13 UUID Class ... 30
4.2.14 INTERNET_ID Class.. 31

5 Terminology Package... 33
5.1 Overview ... 33
5.2 Service Interface.. 33
5.2.1 Class Definitions ... 34
5.2.1.1 TERMINOLOGY_SERVICE Class ...34
5.2.1.2 TERMINOLOGY_ACCESS Class .. 34
5.2.1.3 CODE_SET_ACCESS Class ..35

6 Measurement Package... 37
6.1 Overview ... 37
6.2 Service Interface.. 37
6.2.1 Class Definitions ... 37
6.2.1.1 MEASUREMENT_SERVICE_ACCESS Class ...37

7 Definition Package ... 39
7.1 Overview ... 39
7.1.1 Class Definitions ... 39
7.1.1.1 OPENEHR_DEFINITIONS Class .. 39

A References ... 41
A.1 General .. 41
Date of Issue: 06 Feb 2006 Page 6 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Introduction
Rev 1.5
1 Introduction

1.1 Purpose
This document describes the openEHR Support Reference Model, whose semantics are used by all
openEHR Reference Models. The intended audience includes:

• Standards bodies producing health informatics standards;
• Software development organisations developing EHR systems;
• Academic groups studying the EHR;
• The open source healthcare community.

1.2 Related Documents
Prerequisite documents for reading this document include:

• The openEHR Modelling Guide

1.3 Status
This document is under development, and is published as a proposal for input to standards processes
and implementation works.

This document is available at http://svn.openehr.org/specification/TAGS/Release-
1.0/publishing/architecture/rm/support_im.pdf.

The latest version of this document can be found at http://svn.openehr.org/specifica-
tion/TRUNK/publishing/architecture/rm/support_im.pdf.

Blue text indicates sections under active development.

1.4 Peer review
Areas where more analysis or explanation is required are indicated with “to be continued” paragraphs
like the following:

To Be Continued: more work required

Reviewers are encouraged to comment on and/or advise on these paragraphs as well as the main con-
tent. Please send requests for information to info@openEHR.org. Feedback should preferably be
provided on the mailing list openehr-technical@openehr.org, or by private email.

1.5 Conformance
Conformance of a data or software artifact to an openEHR Reference Model specification is deter-
mined by a formal test of that artifact against the relevant openEHR Implementation Technology
Specification(s) (ITSs), such as an IDL interface or an XML-schema. Since ITSs are formal, auto-
mated derivations from the Reference Model, ITS conformance indicates RM conformance.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 7 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

mailto:info@gehr.org
mailto:openehr-technical@openehr.org
http://svn.openehr.org/specification/TAGS/Release-1.0/publishing/architecture/rm/support_im.pdf
http://svn.openehr.org/specification/TAGS/Release-1.0/publishing/architecture/rm/support_im.pdf
http://svn.openehr.org/specification/TRUNK/publishing/architecture/rm/support_im.pdf
http://svn.openehr.org/specification/TRUNK/publishing/architecture/rm/support_im.pdf

Introduction The openEHR Support Information Model
Rev 1.5
Date of Issue: 06 Feb 2006 Page 8 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Support Package
Rev 1.5
2 Support Package

2.1 Overview
The Support Reference Model comprises types which are used throughout other openEHR models,
but are defined elsewhere, either by standards organisations or which are accepted de facto standards.
The package structure is illustrated in FIGURE 1.

The four Support packages define the semantics respectively for constants, terms, scientific measure-
ment and identifiers, which are assumed by the rest of the openEHR specifications. The class
EXTERNAL_ENVIRONMENT_ACCESS is a mixin class providing access to external services.

2.2 Class Definitions

2.2.1 EXTERNAL_ENVIRONMENT_ACCESS Class

CLASS EXTERNAL_ENVIRONMENT_ACCESS (abstract)

Purpose A mixin class providing access to services in the external environment.

Functions Signature Meaning

eea_terminology_svc:
TERMINOLOGY_SERVICE

Return an interface to the terminology serv-
ice

eea_measurement_svc:
MEASUREMENT_SERVICE

Return an interface to the measurement serv-
ice

FIGURE 1 rm.support and assumed_types Packages

support

definition

assumed_types

terminology measurement identification

EXTERNAL_ENVIRONMENT_ACCESS

TERMINOLOGY_
SERVICE

MEASUREMENT_
SERVICE
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 9 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Support Package The openEHR Support Information Model
Rev 1.5
Invariants Terminology_service_exists: eea_terminology_svc /= Void
Measurement_service_exists: eea_measurement_svc /= Void

CLASS EXTERNAL_ENVIRONMENT_ACCESS (abstract)
Date of Issue: 06 Feb 2006 Page 10 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Assumed Types
Rev 1.5
3 Assumed Types

3.1 Overview
This section describes types assumed by all openEHR models. The set of types chosen here is based
on a lowest common denominator set from threes sources, as follows.

• ISO 11404 (2003 revision).
• Well-known interoperability formalisms, including OMG IDL, W3C XML-schema.
• Well-known object-oriented programming languages, including C++, Java, C#, and Eiffel.

The intention in openEHR is to make the minimum possible assumptions about types found in imple-
mentation formalisms, while making sufficient assumptions to both enable openEHR models to be
conveniently specified, and to allow the typical basic types of these formalisms to be used in their
normal way, rather than being re-invented by openEHR. The ISO 11404 (2003) standard contains
basic semantics of “general purpose data types” (GPDs) for information technology, and is used here
as a normative basis for describing assumptions about types. The operations and properties described
here are compatible with those used in ISO 11404, but not always the same, as 11404 has not chosen
to use object-oriented functions. For example, the notional function has(x:T) (test for presence of a
value in a set) defined on the type Set<T> below is not defined on the ISO 11404 Set type; instead,
the function IsIn(x: T; s: Set<T>) is defined. However, in object-oriented formalisms, the
function IsIn defined on a Set type would usually mean “subset of”, i.e. true if this set is contained
inside another set. In the interests of clarity for developers, an object-oriented style of functions and
properties has been used here.

Two groups of assumed types are identified: primitive types, which are those built in to a formalism’s
type system, and library types, which are assumed to be available in a (class) library defined in the
formalism. Thus, the type Boolean is always assumed to exist in a formalism, while the type
Array<T> is assumed to be available in a library. For practical purposes, these two categories do not
matter that much - whether String is really a library class (the usual case) or an inbuilt type doesn’t
make much difference to the programmer. They are shown separately here mainly as an explanatory
convenience.

The assumptions that openEHR makes about existing types are documented below in terms of inter-
face definitions. Each of these definitions contains only the assumptions required for the given type to
be used in the openEHR Reference Model - it is not by any means a complete interface definition.
The name and semantics of any function used here for an assumed type might not be identical to those
found in some implementation technologies, but should be very close. Any mapping required should
be stated in the relevant ITS. The definitions are compatible with the ISO 11404 standard, 2003 revi-
sion. Operation semantics are described formally using pre- and post-conditions. The keyword “Cur-
rent” stands for “the current instance” (known as “this” or “self” in various languages). The keyword
“like” anchors the type of the reference to the type of the object whose reference follows like. Not all
types have definition tables - only those which add features to their inheritance parent have a table.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 11 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Assumed Types The openEHR Support Information Model
Rev 1.5
3.2 Inbuilt Primitive Types
The following types consititute the minimum built in set of types assumed by openEHR of an imple-
mentation formalism.

As shown in the table, openEHR assumes that Character is an 8-bit type. This is because the only use
of Character in openEHR is in encapsulated data (openEHR Data Types), where the intention is to
represent opaque data. Note that “octet” would probably be a more correct name to use here, but it
generally is not used in programming languages.

FIGURE 2 illustrates the inbuilt types. Simple inheritance relationships are shown which facilitate the
type descriptions below. A class “Any” is therefore used to stand for the usual top-level class in all
object-oriented type systems, typically called something like “Any” or “Object”. Inheritance from or
subsitutability for an Any class is not assumed at all in openEHR (hence the dotted lines in the UML).
It is used to enable basic operations like ‘=’ to be described once for the type Any, rather than in every
subtype. The type Ordered_numeric is on the other hand assumed for purposes of specification in
the openEHR data_types.quantity package, and is intended to be mapped to an equivalent type
in a real type system (e.g. in Java, java.lang.Number). Here it is assumed that the operations
defined on Ordered_numeric are available on the types Integer, Real and Double in implemen-
tation type systems, where relevant. Data-oriented implementation type systems such as XML-
schema are not expected to have such operations.

Type name
in openEHR Description ISO 11404

Type
Character represents a type whose value is a member of an 8-bit

character-set (ISO: “repertroire”).
Character

Boolean represents logical True/False values; usually physically
represented as an integer, but need not be

Boolean

Integer represents 32-bit integers Integer

Real represents 32-bit real numbers in any interoperable rep-
resentation, including single-width IEEE floating point

Real

Double type which represents 64-bit real numbers, in any inter-
operable representation including double-precision
IEEE floating point.

Real

FIGURE 2 Primitive Types Assumed by openEHR

Ordered_numeric

Any

Integer Double

Character

Real

Boolean
Date of Issue: 06 Feb 2006 Page 12 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Assumed Types
Rev 1.5
3.2.1 Any Type

3.2.2 Boolean Type

INTERFACE Any (abstract)

Description Abstract supertype. Usually maps to a type like “Any” or “Object” in an object
system. Defined here to provide the value and reference equality semantics.

Abstract Signature Meaning

is_equal (other: Any): Boolean Value equality

Functions Signature Meaning

infix ‘=’ (other: Any): Boolean Reference equality

type: String Dynamic type of object as a String.
Used for type name matching.

Invariants

INTERFACE Boolean

Purpose Boolean type used for two-valued mathematical logic.

Abstract Signature Meaning

infix "and" (other: Boolean): Boolean

require
other_exists: other /= void

ensure
de_morgan: Result = not (not Current
or not other)
commutative: Result = (other and Cur-
rent)

Logical conjunction

infix "and then" (other: Boolean):
Boolean
require
other_exists: other /= void
ensure
de_morgan: Result = not (not Current
or else not other)

Boolean semi-strict conjunction with
other
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 13 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Assumed Types The openEHR Support Information Model
Rev 1.5
3.2.3 Ordered_numeric Type

infix "or" (other: Boolean): Boolean
require
other_exists: other /= void
ensure
de_morgan: Result = not (not Current
and not other)
commutative: Result = (other or Cur-
rent)
consistent_with_semi_strict: Result
implies (Current or else other)

Boolean disjunction with other

infix "or else" (other: Boolean):
Boolean
require
other_exists: other /= void
ensure
de_morgan: Result = not (not Current
and then not other)

Boolean semi-strict disjunction with
`other'

infix "xor" (other: Boolean): Boolean
require
other_exists: other /= void
ensure
definition: Result = ((Current or other)
and not (Current and other))

Boolean exclusive or with `other'

infix "implies" (other: Boolean):
Boolean
require
other_exists: other /= void
ensure
definition: Result = (not Current or else
other)

Boolean implication of `other' (semi-
strict)

Invariants
involutive_negation: is_equal (not (not Current))
non_contradiction: not (Current and (not Current))
completeness: Current or else (not Current)

INTERFACE Ordered_numeric (abstract)

Purpose

Abstract notional parent class of ordered, numeric types, which are types which
have various arithmetic and comparison operators defined. All ordered, quantified
types (i.e. types with a notion of precise “magnitude”) have these operations.
Maps to various types in implementation technologies.

Abstract Signature Meaning

INTERFACE Boolean
Date of Issue: 06 Feb 2006 Page 14 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Assumed Types
Rev 1.5
3.3 Assumed Library Types
The types described in this section are also assumed to be fairly standard by openEHR, but usually to
come from type libraries rather than be built into the type system of implementation formalisms.

infix "*" (other: like Current): like Cur-
rent
require
other_exists: other /= void
ensure
result_exists: Result /= void

Product by `other'. Actual type of
result depends on arithmetic balancing
rules.

infix "+" (other: like Current): like Cur-
rent
require
other_exists: other /= void
ensure
result_exists: Result /= void
commutative: equal (Result, other +
Current)

Sum with `other' (commutative).
Actual type of result depends on arith-
metic balancing rules.

infix "-" (other: like Current): like Cur-
rent
require
other_exists: other /= void
ensure
result_exists: Result /= void

Result of subtracting `other'. Actual
type of result depends on arithmetic
balancing rules.

infix ‘<’ (other: like Current): Boolean Arithmetic comparison. In conjunc-
tion with ‘=’, enables the definition of
the operators ‘>’, ‘>=’, ‘<=’, ‘<>’. In
real type systems, this operator might
be defined on another class for compa-
rability.

Invariants

Type name in
openEHR Description ISO 11404:

2003 Type
String represents unicode-enabled strings Character-

String/
Sequence

Array<T> physical container of items indexed by number Array

List<T> container of items, implied order, non-unique member-
ship

Sequence

Set<T> container of items, no order, unique membership Set

Bag<T> container of items, no order, non-unique membership Bag

INTERFACE Ordered_numeric (abstract)
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 15 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Assumed Types The openEHR Support Information Model
Rev 1.5
FIGURE 3 illustrates the assumed library types. As with the assumed primitive types, inheritance and
abstract classes are used for convenience of the definitions below, but are not formally assumed in
openEHR.

3.3.1 String Type

3.3.1.1 UNICODE
It is assumed in the openEHR specifications that Unicode is supported by the type String. Unicode
is needed for all Asian, Arabic and other script languages, for both data values (particularly plain text
and coded text) and for many predefined string attributes of the classes in the openEHR Reference
Model. It encompasses all existing character sets.

Hash<T,
U:Comparable>

a table of values of any type T, keyed by values of any
basic comparable type U, typically String or Integer,
but may be more complex types, e.g. a coded term type.

Table

Interval<T> Intervals

INTERFACE String

Description Strings of characters, as used to represent textual data in any natural or formal lan-
guage.

Functions Signature Meaning

infix ‘+’ (other: String): String Concatenation operator - causes ‘other’
to be appended to this string

is_empty: Boolean True if string is empty, i.e. equal to “”.

is_integer: Boolean True if string can be parsed as an inte-
ger.

Invariants

Type name in
openEHR Description ISO 11404:

2003 Type

FIGURE 3 Library Types Assumed by openEHR

Any

Aggregate

Array SetList Hash

Interval String T->Ordered

TTT T,U->Comparable

T

Date of Issue: 06 Feb 2006 Page 16 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Assumed Types
Rev 1.5
3.3.2 Aggregate Type

3.3.3 Hash Type

3.4 Date/Time Types
Although the ISO 11404 (2003) standard defines a date-and-time type generator (section 8.1.6), and a
timeinterval type (section 10.1.6), the reality is that dates and times are provided in significantly
differing ways in implementation formalisms, and as a result, openEHR assumes nothing at all about
them. Accordingly, types for date, time, date/time and duration are defined in the openEHR Data
Types Information Model, ensuring standardised meanings of these types within openEHR. ISO 8601
is used as the normative basis for both string literal representation and properties chosen within these
models.

INTERFACE Aggregate <T> (abstract)

Description Abstract parent of of the aggregate types List<T>, Set<T>, Bag<T>, Array<T>
and Hash<T,K>.

Functions Signature Meaning

has (v: T): Boolean Test for membership of a value

count: Integer Number of items in container

Invariants

INTERFACE Hash <T, U: Comparable>

Description Type representing a keyed table of values. T is the value type, and U the type of
the keys.

Functions Signature Meaning

has_key (a_key: U): Boolean Test for membership of a key

item (a_key: U): T Return item for key ‘a_key’. Equiv-
alent to ISO 11404 fetch operation.

Invariants
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 17 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Assumed Types The openEHR Support Information Model
Rev 1.5
3.4.1 Interval Type

INTERFACE Interval <T:Ordered>

Purpose Interval of ordered items.

Attributes Signature Meaning

lower: T lower bound

upper: T upper bound

lower_unbounded: Boolean lower boundary open (i.e. = -infinity)

upper_unbounded: Boolean upper boundary open (i.e. = +infinity)

lower_included: Boolean lower boundary value included in
range if not lower_unbounded

upper_included: Boolean upper boundary value included in
range if not upper_unbounded

Functions Signature Meaning

has(e:T): Boolean True if (lower_unbounded or
((lower_included and v >= lower) or
v > lower)) and
(upper_unbounded or
((upper_included and v <= upper or v
< upper)))

Invariants

Limits_consistent: (not upper_unbounded and not lower_unbounded) implies
lower <= upper
Limits_comparable: (not upper_unbounded and not lower_unbounded) implies
lower.strictly_comparable_to(upper)
Date of Issue: 06 Feb 2006 Page 18 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Identification Package
Rev 1.5
4 Identification Package

4.1 Overview
The identification package describes a model of references and identifiers for information enti-
ties only and is illustrated in FIGURE 4. Real-world entity identifiers are defined in the openEHR
Data Types information model.

4.1.1 Requirements
Identification of entities both in the real world and in information systems is a non-trivial problem.
The scenarios for identification across systems in a health information environment include the fol-
lowing:

• real world identifiers such as social security numbers, veterans affairs ids etc can be
recorded as required by health care facilities, enterprise policies, or legislation;

• identifiers for informational entities which represent real world entities or processes should
be unique;

• it should be possible to determine if two identifiers refer to information entities that are
linked to the same real world entity, even if instances of the information entities are main-
tained in different systems;

FIGURE 4 rm.support.identification Package

OBJECT_REF
namespace[1]: String
type[1]: String

PARTY_REF

identification

ARCHETYPE_ID

qualified_rm_entity: String
rm_originator: String
rm_name: String
rm_entity: String
domain_concept: String
specialisation: String
version_id: String

ACCESS_
GROUP_REF

ISO_OID

id

1

TERMINOLOGY_ID

name: String
version_id: String

OBJECT_ID
value[1]: String

UUID

UID
value[1]: String

HIER_OBJECT_ID

root: UID
extension: String

VERSION_TREE_ID
value[1]: String
trunk_version: String
is_branch: Boolean
branch_number: String
branch_version: String

OBJECT_VERSION_ID

object_id: UID
version_tree_id:
VERSION_TREE_ID
creating_system_id:
HIER_OBJECT_ID
is_branch: Boolean

LOCATABLE_REF
path[0..1]: String

id1

INTERNET_ID
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 19 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Identification Package The openEHR Support Information Model
Rev 1.5
• versions or changes to real-world entity-linked informational entities (which may create
new information instances) should be accounted for in two ways:

- it should be possible to tell if two identifiers refer to distinct versions of the same
informational entity in the same version tree;

- it should not be possible to confuse same-named versions of informational entities
maintained in multiple systems which purport to represent the same real world
entity. E.g. there is no guarantee that two systems’ “latest” version of the Person
“Dr Jones” is the same.

Medico-legal use of information relies on previous states of information being identifiable
in some way.

• it should be possible for an entity in one system or service (such as the EHR) to refer to an
entity in another system or service in such a way that:

- the target of the reference is easily finable within the shared environment, and
- the reference does is valid regardless of the physical architecture of servers and

applications.

The following subsections describe some of the features and challenges of identification.

Identification of Real World Entities (RWEs)
Real world entities such as people, car engines, invoices, and appointments all have identifiers.
Although many of these are designed to be unique within a jurisdiction, they are often not, due to data
entry errors, bad design (ids which are too small or incorporate some non-unique characteristic of the
identified entities), bad process (e.g. non-synchronised id issuing points); identity theft (e.g. via theft
of documents of proof or hacking). In general, while some real world identifiers (RWIs) are “nearly
unique”, none can be guaranteed so. It should also be the case that if two RWE identifiers are equal,
they refer to the same RWE.

Identification of Informational Entities (IEs)
As soon as information systems are used to record facts about RWEs, the situation becomes more
complex because of the intangible nature of information. In particular:

• the same RWE can be represented simultaneously on more than one system (“spatial multi-
plicity”);

• the same RWE may be represented by more than one “version” of the same IE in a system
(“temporal multiplicity”).

At first sight, it appears that there can also be purely informational entities, i.e. IEs which do not refer
to any RWE, such as books, online-only documents and software. However, as soon as one considers
an example it becomes clear that there is always a notional “definitive” or “authoritative” (i.e. trusted)
version of every such entity. These entities can better be understood as “virtual RWEs”. Thus it can
still be said that multiple IEs may refer to any given RWE.

The underlying reason for the multiplicity of IEs is that “reality” - time and space - in computer sys-
tems is not continuous but discrete, and each “entity” is in fact just a snapshot of certain attribute val-
ues of a RWE.

If identifiers are assigned to IEs without regard to versions or duplicates, then no assertion can be
made about the identified RWE when two IE ids are compared.
Date of Issue: 06 Feb 2006 Page 20 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Identification Package
Rev 1.5
Identification of Versions of Informational Entities
The notion of “versioning” applies only to informational entities, i.e. distinct instances of content
each representing a snapshot of some notional information. Where such instances are stored and man-
aged in versioned containers, within a versioning system of some kind, explicit identification of the
versions is required. The requirements are discussed in detail in the Common IM, change_control
package. They can be summarised as follows:

• it must be possible to distinguish two versions of the same notional entity, i.e. know from
the identifier if they are the same or different versions of the same thing;

• it must be possible to tell the relationship between the items in a versioned lineage, from the
version identifiers.

Referencing of Informational Entities
Within a distributed information environment, there is a need for entities not connected by direct ref-
erences in the same memory space to be able to refer to each other. There are two competing require-
ments:

• that the separation of objects in a distributed computing environment not compromise the
semantics of the model. At the limit, this mandates the use of proxy types which have the
same abstract interface as the proxied type; i.e. the “static” approach of Corba.

• that different types of information can be managed relatively independently; for example
EHR and demographic information can be managed by different groups in an organisation
or community, each with at least some freedom to change implementation and model
details.

4.1.2 Identifying Real World Entities (RWE)
In openEHR, Real world entities are identified with a multipart identifier expressed in the data type
DV_IDENTIFIER. This type should be used to express lab result identifiers, veterans affairs numbers
and so on, i.e. any identifier issued by an organisation and corresponding to a continuant (an entity
that continues to exist even if its attributes change over time).

4.1.3 Identifying Informational Entities (IEs)
The class OBJECT_ID is an abstract model of identifiers of IEs. It is assumed a priori that there can in
general be more than one IE referring to the same underlying real world entity (RWE), such as a per-
son or invoice; this is due to the possible existence of multiple copies, and also multiple versions. An
OBJECT_ID therefore implicitly refers to a version of something; two versions of a Person object
must have two distinct OBJECT_IDs. The rule for versioning is that if any attribute value of the IE
changes, a new OBJECT_ID must be generated. Some OBJECT_ID subtypes explicitly model a ver-
sion identifier. In practice, it can usually be omitted for ids of terminologies, where the terminology
obeys the rule that a given code never changes its meaning through all versions of the terminology
(i.e. ICD10 code F40.0 will mean “Agoraphobia” for all time (in English)).

The subtype HIER_OBJECT_ID defines a hierarchical identifier model, along the lines of ISO Oids; it
includes the attributes root and extension, to make up a complete, unique identifier. The root attribute
is of type UID, meaning it has the properties of a timeless unique object identifier. Subtypes of UID
include the ISO_OID and UUID types. The latter models a DCE UUID (also known as a GUID).

The other subtypes, ARCHETYPE_ID and TERMINOLOGY_ID define different kinds of identifier, the
former being a multi-axial identifier for archetypes, and the latter being a globally unique single
string identifier for terminologies.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 21 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Identification Package The openEHR Support Information Model
Rev 1.5
4.1.4 Identifying Versions of Informational Entities
The scheme used in openEHR for identifying versions uses a three-part identifier, consisting of:

• the identifier of the version container, in the form of an OBJECT_ID;
• the location in the version tree, as a 1- or 3-part numeric identifier, where the latter type

expresses branching;
• the identifier of the system in which this version was created.

Under this scheme, multiple versions in the same container all have the same value for the first iden-
tifier, while their location in the version tree is given by the combination of the version tree identifier
and the identifier of the creating system.

The format of the creating_system_id attribute is not currently fixed, hence its type is
HIER_OBJECT_ID, allowing for various possibilities. The requirements on this identifier are that it
be unique per system, and that it be easy to obtain or generate. It is also helpful if it is a meaningful
identifier. The two most practical candidates appear to be GUIDs (which are not meaningful, but are
easy to generate) and reverse internet domain identifiers, as recommended in [3] (these are easy to
determine if the system has an internet address, and are meaningful and directly processible, however
unconnected systems pose a problem). ISO Oids might also be used. All of these identifier types are
accommodated via the use of HIER_OBJECT_ID.

A full explanation of the version identification scheme and its capabilities is given in the
change_control section of the Common IM.

4.1.5 Referring to Informational Entities
All OBJECT_IDs are used as identifier attributes within the thing they identify, in the same way as a
database primary key. To refer to an identified object, an instance of the class OBJECT_REF is
required, in the same way as a database foreign key. OBJECT_REF is provided as a means of distrib-
uted referencing, and includes the object namespace (typically 1:1 with some service, such as “termi-
nology”) and type. The general principle of object references is to be able to refer to an object
available in a particular namespace or service. Usually they are used to refer to objects in other serv-
ices, such as a demographic entity from within an EHR, but they may be used to refer to local objects
as well. The type may be the concrete type of the referred-to object (e.g. “GP”) or any proper ancestor
(e.g. “PARTY”). The notion of object reference provided here is a compromise between the static
binding notion of Corba (where each model is dependent on all the interface details of the classes in
other models) and a purely dynamic referencing scheme, where the holder of a reference cannot even
tell what type of object the reference points to.

4.2 Class Descriptions

4.2.1 OBJECT_REF Class

CLASS OBJECT_REF

Purpose

Class describing a reference to another object, which may exist locally or be
maintained outside the current namespace, e.g. in another service. Services are
usually external, e.g. available in a LAN (including on the same host) or the inter-
net via Corba, SOAP, or some other distributed protocol. However, in small sys-
tems they may be part of the same executable as the data containing the Id.
Date of Issue: 06 Feb 2006 Page 22 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Identification Package
Rev 1.5
4.2.2 ACCESS_GROUP_REF Class

4.2.3 PARTY_REF Class

Attributes Signature Meaning

id: OBJECT_ID Globally unique id of an object, regardless of
where it is stored.

namespace: String Namespace to which this identifier belongs in
the local system context (and possibly in any
other openEHR compliant environment) e.g.
“terminology”, “demographic”. These names
are not yet standardised. Legal values for the
namespace are
“local” | “unknown” | “[a-zA-
Z][a-zA-Z0-9_-:/&+?]*”

type: String Name of the class of object to which this
identifier type refers, e.g. “PARTY”, “PER-
SON”, “GUIDELINE” etc. These class
names are from the relevant reference model.
The type name “ANY” can be used to indi-
cate that any type is accepted (e.g. if the type
is unknown).

Invariant
Id_exists: id /= Void
Namespace_exists: namespace /= Void and then not namespace.empty
Type_exists: type /= Void and then not type.empty

CLASS ACCESS_GROUP_REF

Purpose Reference to access group in an access control service.

Inherit OBJECT_REF

Functions Signature Meaning

Invariant Type_validity: type.is_equal(“ACCESS_GROUP”)

CLASS PARTY_REF

Purpose Identifier for parties in a demographic or identity service. There are typically a
number of subtypes of the PARTY class, including PERSON, ORGANISATION, etc.

Inherit OBJECT_REF

Functions Signature Meaning

CLASS OBJECT_REF
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 23 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Identification Package The openEHR Support Information Model
Rev 1.5
4.2.4 LOCATABLE_REF Class

4.2.5 OBJECT_ID Class

Invariant Type_validity: type.is_equal(“PERSON”) or type.is_equal(“ORGANISATION”)
or type.is_equal(“GROUP”) or type.is_equal(“AGENT”)

CLASS LOCATABLE_REF

Purpose
Reference to a LOCATABLE instance inside the top-level content structure inside a
VERSION<T>; the path attribute is applied to the object that VERSION.data points
to.

Inherit OBJECT_REF

Attributes Signature Meaning

1..1
(redefined)

id: OBJECT_VERSION_ID The identifier of the Version.

0..1

path: String The path to an instance in question, as an
absolute path with respect to the object found
at VERSION.data. An empty path means that
the object referred to by id being specified.

Functions Signature Meaning

as_uri: String A URI form of the reference, created by con-
catenating the following:
“ehr://” + id.value + “/” + path

Invariant Path_valid: path /= Void implies not path.is_empty

CLASS OBJECT_ID (abstract)

Purpose
Ancestor class of identifiers of informational objects. Ids may be completely
meaningless, in which case their only job is to refer to something, or may carry
some information to do with the identified object.

Use
Object_ids are used inside an object to identify that object. To identify another
object in another service, use an OBJECT_REF, or else use a UID for local objects
identified by UID.

Attributes Signature Meaning

value: String The value of the id in the form defined below.

Invariant Value_exists: value /= Void and then not value.empty

CLASS PARTY_REF
Date of Issue: 06 Feb 2006 Page 24 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Identification Package
Rev 1.5
4.2.6 HIER_OBJECT_ID Class

4.2.6.1 Identifier Syntax
The syntax of the value attribute by default follows the following pattern:

<root> “::” <extension>

4.2.7 OBJECT_VERSION_ID Class

CLASS HIER_OBJECT_ID

Purpose Hierarchical identifiers consisting of a root part and an optional extension.

HL7 The HL7v3 II Data type.

Functions Signature Meaning

root: UID The identifier of the conceptual namespace in
which the object exists, within the identifica-
tion scheme.

has_extension: Boolean True if there is an extension part.

extension: String A local identifier of the object within the con-
text of the root identifier.

Invariant Root_valid: root /= Void
Extension_valid: extension /= Void

CLASS OBJECT_VERSION_ID

Purpose Globally unique identifier for one version of a versioned object.

Inherit OBJECT_ID

Functions Signature Meaning

1..1

object_id: UID Unique identifier for logical object of
which this identifier identifies one version;
normally the object_id will be the unique
identifier of the version container contain-
ing the version referred to by this
OBJECT_VERSION_ID instance.

1..1

version_tree_id:
VERSION_TREE_ID

Tree identifier of this version with respect
to other versions in the same version tree,
as either 1 or 3 part dot-separated numbers,
e.g. “1”, “2.1.4”.

1..1
creating_system_id:
HIER_OBJECT_ID

Identifier of the system that created the
Version corresponding to this Object ver-
sion id.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 25 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Identification Package The openEHR Support Information Model
Rev 1.5
4.2.7.1 Identifier Syntax
The string form of an OBJECT_VERSION_ID consists of three segments separated by double colons
(“::”), i.e.:

<object_id>::<creating_system_id>::<version_tree_id>

An example is as follows:
F7C5C7B7-75DB-4b39-9A1E-C0BA9BFDBDEC::87284370-2D4B-
4e3d-A3F3-F303D2F4F34B::2

4.2.8 VERSION_TREE_ID Class

Functions Signature Meaning

is_branch: Boolean True if this identifier represents a branch.

Invariants
Object_valid: object_id /= Void
Version_tree_id: version_tree_id /= Void
creating_system_id: creating_system_id /= Void

CLASS VERSION_TREE_ID

Purpose Version tree identifier for one version.

Attributes Signature Meaning

1..1
value: String String form of this identifier. Format is:

<trunk_version>[.<branch_number>.<bran
ch_version>].

Functions Signature Meaning

trunk_version: String Trunk version number.

branch_number: String Number of branch from the trunk point.

branch_version: String Version of the branch.

is_branch: Boolean True if this version identifier represents a
branch, i.e. has branch_number and
branch_version parts.

CLASS OBJECT_VERSION_ID
Date of Issue: 06 Feb 2006 Page 26 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Identification Package
Rev 1.5
4.2.9 ARCHETYPE_ID Class

Invariants

Value_valid: value /= Void and then not value.is_empty
Trunk_version_valid: trunk_version /= Void and then trunk_version.is_integer
Branch_number_valid: branch_number /= Void and then
branch_number.is_integer
Branch_version_valid: branch_version /= Void and then
branch_version.is_integer
Branch_validity: (branch_number = Void and branch_version = Void) xor
(branch_number /= Void and branch_version /= Void)
Is_branch_validity: is_branch xor branch_version = Void

CLASS ARCHETYPE_ID

Purpose Identifier for archetypes.

Inherit OBJECT_ID

Functions Signature Meaning

qualified_rm_entity: String Globally qualified reference model entity,
e.g. “openehr-ehr_rm-entry”.

domain_concept: String Name of the concept represented by this
archetype, including specialisation, e.g.
“biochemistry result-choles-
terol”.

rm_originator: String Organisation originating the reference model
on which this archetype is based, e.g.
“openehr”, “cen”, “hl7”.

rm_name: String Name of the reference model, e.g. “rim”,
“ehr_rm”, “en13606”.

rm_entity: String Name of the ontological level within the ref-
erence model to which this archetype is tar-
geted, e.g. for openEHR, “folder”,
“composition”, “section”, “entry”.

specialisation: String Name of specialisation of concept, if this
archetype is a specialisation of another arche-
type, e.g. “cholesterol”.

version_id: String Version of this archetype.

CLASS VERSION_TREE_ID
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 27 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Identification Package The openEHR Support Information Model
Rev 1.5
4.2.9.1 Archetype ID Syntax
Archetype identifiers are “multi-axial”, meaning that each identifier instance denotes a single arche-
type within a multi-dimensional space. In this case, the space is essentially a versioned 3-dimensional
space, with the dimensions being:

• reference model entity, i.e. target of archetype
• domain concept
• version

As with any multi-axial identifier, the underlying principle of an archetype id is that all parts of the id
must be able to be considered immutable. This means that no variable characteristic of an archetype
(e.g. accrediting authority, which might change due to later accreditation by another authority, or may
be multiple) can be included in its identifier. The syntax of an ARCHETYPE_ID is as follows:

archetype_id: qualified_rm_entity ‘.’ domain_concept ‘.’ version_id

qualified_rm_entity: rm_originator ‘-’ rm_name ‘-’ rm_entity
rm_originator: NAME
rm_name: NAME
rm_entity: NAME

domain_concept: concept_name { ‘-’ specialisation }*
concept_name: NAME
specialisation: NAME

version_id: ‘v’ NUMBER

NUMBER: [0-9]*
NAME: [a-z][a-z0-9()/%$#&]*

The field meanings are as follows:

rm_originator: id of organisation originating the reference model on which this archetype is
based;

rm_name: id of the reference model on which the archetype is based;
rm_entity: ontological level in the reference model;
domain_concept: the domain concept name, including any specialisations;
version_id: numeric version identifier;

Examples of archetype identifiers include:

Invariant

Qualified_rm_entity_valid: qualified_rm_entity /= Void and then not
qualified_rm_entity.is_empty
Domain_concept_valid: domain_concept /= Void and then not
domain_concept.is_empty
Rm_originator_valid: rm_originator /= Void and then not
rm_originator.is_empty
Rm_name_valid: rm_name /= Void and then not rm_name.is_empty
Rm_entity_valid: rm_entity /= Void and then not rm_entity.is_empty
Specialisation_valid: specialisation /= Void implies not specialisation.is_empty
Version_id_valid: version_id /= Void and then not version_id.is_empty

CLASS ARCHETYPE_ID
Date of Issue: 06 Feb 2006 Page 28 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Identification Package
Rev 1.5
• openehr-ehr_rm-section.physical_examination.v2
• openehr-ehr_rm-section.physical_examination-prenatal.v1
• hl7-rim-act.progress_note.v1
• openehr-ehr_rm-entry.progress_note-naturopathy.v2

Archetypes can also be identified by other means, such as ISO oids.

4.2.10 TERMINOLOGY_ID Class

4.2.10.1 Identifier Syntax
The syntax of the value attribute is as follows:

name [“(” version “)”]

Examples of terminology identifiers include:
• “snomed-ct”
• “ICD9(1999)”

Versions should only be needed for those terminologies which break the rule that the thing being
identified with a code loses or changes its meaning over versions of the terminology. This should not
be the case for well known modern terminologies and ontologies, particularly those designed since
the publication of Cimino’s ‘desiderata’ [1] of which the principle of “concept permanance” is appli-
cable here - “A concept's meaning cannot change and it cannot be deleted from the vocabulary”.
However, there maybe older terminologies, or specialised terminologies which may not have obeyed
these rules, but which are still used; version ids should always be used for these.

CLASS TERMINOLOGY_ID

Purpose

Identifier for terminologies such accessed via a terminology query service. In this
class, the value attribute identifies the Terminology in the terminology service,
e.g. “SNOMED-CT”. A terminology is assumed to be in a particular language,
which must be explicitly specified.

The value if the id attribute is the precise terminology id identifier, including
actual release (i.e. actual “version”), local modifications etc; e.g. “ICPC2”

Inherit OBJECT_ID

Functions Signature Meaning

name: String Return the terminology id (which includes the
“version” in some cases). Distinct names corre-
spond to distinct (i.e. non-compatible) terminol-
ogies. Thus the names “ICD10AM” and
“ICD10” refer to distinct terminologies.

version_id: String Version of this terminology, if versioning sup-
ported, else the empty string.

Invariants Name_valid: name /= Void and then not name.is_empty
Version_id_valid: version_id /= Void
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 29 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Identification Package The openEHR Support Information Model
Rev 1.5
4.2.11 UID Class

4.2.12 ISO_OID Class

4.2.13 UUID Class

CLASS UID (abstract)

Purpose
Abstract parent of classes representing unique identifiers which identify informa-
tion entities in a durable way. UIDs only ever identify one IE in time or space and
are never re-used.

HL7 The HL7v3 UID Data type.

Attributes Signature Meaning

value: String The value of the id.

Invariant Value_exists: value /= Void and then not value.empty

CLASS ISO_OID

Purpose

Model of ISO’s Object Identifier (oid) as defined by the standard ISO/IEC 8824 .
Oids are formed from integers separated by dots. Each non-leaf node in an Oid
starting from the left corresponds to an assigning authority, and identifies that
authority’s namespace, inside which the remaining part of the identifier is locally
unique.

HL7 The HL7v3 OID Data type.

Inherit UID

Functions Signature Meaning

Invariant

CLASS UUID

Purpose

Model of the DCE Universal Unique Identifier or UUID which takes the form of
hexadecimal integers separated by hyphens, following the pattern 8-4-4-4-12 as
defined by the Open Group, CDE 1.1 Remote Procedure Call specification,
Appendix A. Also known as a GUID.

HL7 The HL7v3 UUID Data type.

Inherit UID

Functions Signature Meaning
Date of Issue: 06 Feb 2006 Page 30 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Identification Package
Rev 1.5
4.2.14 INTERNET_ID Class

Invariant

CLASS INTERNET_ID

Purpose

Model of a reverse internet domain, as used to uniquely identify an internet
domain. In the form of a dot-separated string in the reverse order of a domain
name, specified by IETF RFC 1034
(http://www.ietf.org/rfc/rfc1034.txt).

Inherit UID

Functions Signature Meaning

Invariant

CLASS UUID
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 31 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.ietf.org/rfc/rfc1034.txt

Identification Package The openEHR Support Information Model
Rev 1.5
Date of Issue: 06 Feb 2006 Page 32 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Terminology Package
Rev 1.5
5 Terminology Package

5.1 Overview
This section describes the terminology package, which contains classes for accessing the
openEHR support terminology from within instances of classes defined in the reference model.

5.2 Service Interface
A simple terminology service interface is defined according to FIGURE 5, enabling openEHR terms
to be referenced formally from within the Reference Model.

Structural attributes in the Reference Model, such as FEEDER_AUDIT.change_type are defined by an
invariant in the enclosing class, such as the following:

Change_type_valid: terminology(“openehr”).codes_for_group_name(“audit change type”,
“en”).has(change_type.defining_code)

This is a formal way of saying that the attribute change_type must have a value such that its
defining_code (its CODE_PHRASE) is in the set of CODE_PHRASEs in the openEHR Terminology
which are in the group called (in english) “audit change type”.

A similar invariant is used for attributes of type CODE_PHRASE, which come from a code_set:

Media_type_terminology: media_type /= Void and then
code_set(“media types”).all_codes.has(media_type)

FIGURE 5 rm.support.terminology Package

terminology

TERMINOLOGY_SERVICE

terminology (name: String): TERMINOLOGY_ACCESS
code_set (name: String): CODE_SET_ACCESS
has_terminology (name: String): Boolean
has_code_set (name: String): Boolean

TERMINOLOGY_ACCESS
<<interface>>

id: String
all_codes: Set<CODE_PHRASE>
codes_for_group_id (group_id: String): Set<CODE_PHRASE>
codes_for_group_name (name, lang: String): Set<CODE_PHRASE>
rubric_for_code (code, lang: String): String

CODE_SET_ACCESS
<<interface>>

id: String
all_codes: Set<CODE_PHRASE>
has_lang (a_lang: CODE_PHRASE):
Boolean
has_code (a_code: CODE_PHRASE):
Boolean
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 33 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Terminology Package The openEHR Support Information Model
Rev 1.5
5.2.1 Class Definitions
5.2.1.1 TERMINOLOGY_SERVICE Class

5.2.1.2 TERMINOLOGY_ACCESS Class

CLASS TERMINOLOGY_SERVICE

Purpose Defines an object providing proxy access to a terminology service.

Functions Signature Meaning

terminology (name: String):
TERMINOLOGY_ACCESS
require
name /= Void and then
has_terminology (name: String)
ensure
Result /= Void

Return an interface to the terminology named
‘name’

code_set (name: String):
CODE_SET_ACCESS
require
name /= Void and then
has_code_set (name: String)
ensure
Result /= Void

Return an interface to the code_set named
‘name’

has_terminology (name:
String): Boolean
require
name /= Void and then not
name.is_empty

True if terminology named ‘name’ known by
this service.

has_code_set (name: String):
Boolean
require
name /= Void and then not
name.is_empty

True if code_set named ‘name’ known by
this service.

Invariants

CLASS TERMINOLOGY_ACCESS

Purpose Defines an object providing proxy access to a terminology.

Functions Signature Meaning

id: String Identification of this Terminology
Date of Issue: 06 Feb 2006 Page 34 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Terminology Package
Rev 1.5
5.2.1.3 CODE_SET_ACCESS Class

all_codes: Set<CODE_PHRASE> Return all codes known in this terminology

codes_for_group_id (group_id:
String): Set<CODE_PHRASE>

Return all codes under grouper ‘group_id’
from this terminology

codes_for_group_name (name,
lang: String):
Set<CODE_PHRASE>

Return all codes under grouper whose name
in ‘lang’ is ‘name’ from this terminology

rubric_for_code (code, lang:
String): String

Return all rubric of code ‘code’ in language
‘lang’.

Invariants id_exists: id /= Void and then not id.is_empty

CLASS CODE_SET_ACCESS

Purpose Defines an object providing proxy access to a code_set.

Functions Signature Meaning

id: String Identification of this Terminology

all_codes: Set<CODE_PHRASE> Return all codes known in this terminology

has_lang (a_lang:
CODE_PHRASE): Boolean

True if code set knows about ‘a_lang’

has_code (a_code:
CODE_PHRASE): Boolean

True if code set knows about ‘a_code’

Invariants id_exists: id /= Void and then not id.is_empty

CLASS TERMINOLOGY_ACCESS
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 35 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Terminology Package The openEHR Support Information Model
Rev 1.5
Date of Issue: 06 Feb 2006 Page 36 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Measurement Package
Rev 1.5
6 Measurement Package

6.1 Overview
The Measurement package defines a minimum of semantics relating to quantitative measurement,
units, and conversion, enabling the Quantity package of the openEHR Data Types Information Model
to be correctly expressed. As for the Terminology package, a simple service interface is assumed,
which provides useful functions to other parts of the reference model. The definitions underlying
measurement and units come from a variety of sources, including:

• CEN ENV 12435, Medical Informatics - Expression of results of measurements in health
sciences (see http://www.centc251.org);

• the Unified Code for Units of Measure (UCUM), developed by Gunther Schadow and
Clement J. McDonald of The Regenstrief Institute (available in HL7v3 ballot materials;
http://www.hl7.org).

These of course rest in turn upon a vast amount of literature and standards, mainly from ISO on the
subject of scientific measurement.

6.2 Service Interface
A simple measurement data service interface is defined according to FIGURE 6, enabling quantita-
tive semantics to be used formally from within the Reference Model. Note that this service as cur-
rently defined in no way seeks to properly model the semantics of units, conversions etc - it provides
only the minimum functions required by the openEHR Reference Model.

6.2.1 Class Definitions
6.2.1.1 MEASUREMENT_SERVICE_ACCESS Class

CLASS MEASUREMENT_SERVICE

Purpose Defines an object providing proxy access to a measurement information service.

Functions Signature Meaning

is_valid_units_string (units:
String): Boolean
require
units /= Void

True if the units string ‘units’ is a valid string
according to the HL7 UCUM specification.

FIGURE 6 rm.support.measurement Package

measurement

MEASUREMENT_SERVICE

is_valid_units_string (units: String): Boolean
units_equivalent (units1, units2: String): Boolean
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 37 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

http://www.hl7.org
http://www.centc251.org

Measurement Package The openEHR Support Information Model
Rev 1.5
units_equivalent (units1, units2:
String): Boolean
require
units1 /= Void and then
is_valid_units_string(units1)
units2 /= Void and then
is_valid_units_string(units2)

True if two units strings correspond to the
same measured property.

Invariants

CLASS MEASUREMENT_SERVICE
Date of Issue: 06 Feb 2006 Page 38 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model Definition Package
Rev 1.5
7 Definition Package

7.1 Overview
The definition package, illustrated in FIGURE 7, describes symbolic definitions used by the
openEHR models.

7.1.1 Class Definitions
7.1.1.1 OPENEHR_DEFINITIONS Class

CLASS OPENEHR_DEFINITIONS

Purpose Defines an object providing proxy access to a measurement information service.

Attributes Signature Meaning

CR: Character is ‘\015’ Carriage return character

LF: Character is ‘\012’ Linefeed character

Invariants

FIGURE 7 rm.support.definition Package

definition

OPENEHR_DEFINITIONS
CR: Character is ‘\015’
LF: Character is ‘\012’
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 39 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

Definition Package The openEHR Support Information Model
Rev 1.5
Date of Issue: 06 Feb 2006 Page 40 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model References
Rev 1.5
A References

A.1 General
1 Cimino J J. Desiderata for Controlled Medical vocabularies in the Twenty-First Century. IMIA

WG6 Conference, Jacksonville, Florida, Jan 19-22, 1997.
Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 41 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

References The openEHR Support Information Model
Rev 1.5
Date of Issue: 06 Feb 2006 Page 42 of 43 Editors:{T Beale, S Heard}, {D Kalra, D Lloyd}

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

The openEHR Support Information Model
Rev 1.5

Editors:{T Beale, S Heard}, {D Kalra, D Lloyd} Page 43 of 43 Date of Issue: 06 Feb 2006

© 2003-2006 The openEHR Foundation
email: info@openEHR.org web: http://www.openEHR.org

END OF DOCUMENT

	Copyright Notice
	Amendment Record
	Table of Contents
	1 Introduction
	1.1 Purpose
	1.2 Related Documents
	1.3 Status
	1.4 Peer review
	1.5 Conformance

	2 Support Package
	2.1 Overview
	2.2 Class Definitions
	2.2.1 EXTERNAL_ENVIRONMENT_ACCESS Class

	3 Assumed Types
	3.1 Overview
	3.2 Inbuilt Primitive Types
	3.2.1 Any Type
	3.2.2 Boolean Type
	3.2.3 Ordered_numeric Type

	3.3 Assumed Library Types
	3.3.1 String Type
	3.3.1.1 UNICODE

	3.3.2 Aggregate Type
	3.3.3 Hash Type

	3.4 Date/Time Types
	3.4.1 Interval Type

	4 Identification Package
	4.1 Overview
	4.1.1 Requirements
	4.1.2 Identifying Real World Entities (RWE)
	4.1.3 Identifying Informational Entities (IEs)
	4.1.4 Identifying Versions of Informational Entities
	4.1.5 Referring to Informational Entities

	4.2 Class Descriptions
	4.2.1 OBJECT_REF Class
	4.2.2 ACCESS_GROUP_REF Class
	4.2.3 PARTY_REF Class
	4.2.4 LOCATABLE_REF Class
	4.2.5 OBJECT_ID Class
	4.2.6 HIER_OBJECT_ID Class
	4.2.6.1 Identifier Syntax

	4.2.7 OBJECT_VERSION_ID Class
	4.2.7.1 Identifier Syntax

	4.2.8 VERSION_TREE_ID Class
	4.2.9 ARCHETYPE_ID Class
	4.2.9.1 Archetype ID Syntax

	4.2.10 TERMINOLOGY_ID Class
	4.2.10.1 Identifier Syntax

	4.2.11 UID Class
	4.2.12 ISO_OID Class
	4.2.13 UUID Class
	4.2.14 INTERNET_ID Class

	5 Terminology Package
	5.1 Overview
	5.2 Service Interface
	5.2.1 Class Definitions
	5.2.1.1 TERMINOLOGY_SERVICE Class
	5.2.1.2 TERMINOLOGY_ACCESS Class
	5.2.1.3 CODE_SET_ACCESS Class

	6 Measurement Package
	6.1 Overview
	6.2 Service Interface
	6.2.1 Class Definitions
	6.2.1.1 MEASUREMENT_SERVICE_ACCESS Class

	7 Definition Package
	7.1 Overview
	7.1.1 Class Definitions
	7.1.1.1 OPENEHR_DEFINITIONS Class

	A References
	A.1 General

